Departments & Faculty
Mentorship
Each Fellow will be co-mentored by two program faculty (one from MD Anderson and one from Rice), with one faculty member having a supervisory and te other a co-supervisory role. The major research training activities will be carried out at the camput location of the primary mentor.
The program includes a total of 34 faculty mentors from MD Anderson Cancer Center (16) and Rice University (18 mentors).
Rice University Mentors
Department of Bioengineering
Gang Bao,
Ph.D. Foyt Family Professor and Chair of Department of
Bioengineering
The Bao Laboratoryhas been developing genome
editing, nanotechnology and biomolecular engineering approaches for
basic biological studies and medical applications. Current
cancer-related methodology development includesCRISPR/Cas9 based
genome editing, magnetic nanoparticle heating, superparamagnetic
nanoparticles for invivo imaging and drug delivery, and viral-vector
based in vivo gene delivery. Projects available for T32 trainees
include the design, validation and optimization of gene-editing
machinery for cell based therapies; synthesis,costing and
functionalization of magnetic nanoparticles and nanoclusters; cellular
and targeted in vivo delivery using nanoparticles; iron oxide
nanoparticle based immunosorbent assays for early cancer detection;
and magnetic nanoparticle based hyperthermia and free radical
generation for cancer immunotherapy. Dr. Bao hastrained 31 PhD
students and 31 postdocs over the last 25 years. Currently he
supervises 7 PhD students, 2 postdocs and 2 research faculty in his
lab.
Biomolecular Engineering
and Nanomedicine (Bao Lab)
Michael
Diehl, Ph.D. Associate Professor
The
Diehl Laboratory is developing new experimental technologies and
theoretical models to study functional interrelationships between
genes, proteins and other biochemical reactions in cells. They have
established an array of experimental tools to define the composition
and nanometerscale organization of proteins complexes, both in vitro
and in living cells. Their efforts are focused primarily on examining
the mechanisms underlying the regulation and dysregulation of
intracellular transport and cytoskeletal dynamics in various human
diseases, including cancer, immunodeficiency, and neuronal
degeneration. Overall,the ability to engineer and modulate the design
of these complexes provides new abilities to develop systems
level descriptions of their role in cell physiology and human
disease.
Macromolecular Systems
Bioengineering Group
Rebekah Drezek, Ph.D. Professor
Dr. Drezek’s laboratory has combined gold nanoshell based photothermal therapy with CpG immunotherapy to promote the immune stimulatory effects of photothermaltherapy (PTT) and to reduce the immune suppressive outcomes following ablation. Immunostimulatory CpGoligodeoxynucleotides trigger toll-like receptor 9 (TLR9) to activate dendritic cells, promote stimulatory cytokinerelease, and reduce the suppressive activity of MDSCs. Dr. Drezek observed that administering CpGimmunotherapy with photothermal therapy improved tumor burden and survival outcomes in a metastaticmelanoma model. Combining PTT and CpG with other therapies that support anti-tumor immunity could furtherimprove outcomes. For example, combining photothermal therapy with CpG immunotherapy and sunitinibchemotherapy will synergistically reduce immune suppressive MSDC levels and stimulate strong, durable, and systemic anti-tumor responses. Dr. Drezek has mentored 25 PhD students, including 5 prior Medical Sciences Training Program students and 2 postdoctoral fellows.
Optical Molecular Imaging and Nanobiotechnology Laboratory
Naomi J. Halas, Ph.D. Professor
Our group is focused on four principle missions, (1). to design new optically active nanostructures driven by function. (2). to develop and implement new nanofabrication strategies to build, orient, and pattern these nanostructures into new materials and devices. (3). to characterize and understand the physical properties of these optically active nanostructures, devices and materials. (4). to prototype the use of optically active nanostructures in aplications of potential technological and broad societal interest. A major goal of our research program is to produce PhD research scientist with significantly expanded skill sets and expertise who can develop new solutions to research and engineering problems beyond taditional disciplinary boundaries.
Isaac
Hilton, Ph.D. Assistant Professor
The Hilton
laboratory has four unique cancer-related projects available for
MDACC-Rice T32 trainees. First, we are using CRISPR/Cas-based
epigenome editing technologies to maphow different chromatin
modifications influence the expression of key oncogenes. Second, we
are using synthetic transcription factors to tightly control the
expression of oncogenes in human cells to uncover new drug targets and
evaluate how oncogene expression levels tip the balance from healthy
to diseased cellularphenotype(s). Third, we are using multiplexed
synthetic transcription factors to engineer transcriptional networks
to precisely model oncogenesis and the response of cancer cells to
therapeutics. Fourth, we are using CRISPRbasedscreening methods to
identify drivers of drug resistance in cancer. These projects provide
ample opportunities for MDACC-Rice T32 trainees to actively contribute
to the fight against cancer and to become future scientific leaders in
understanding and curing cancer.
Hilton Lab
George Lu, Ph.D. Assistant Professor
The Lu group studies and designs gas vesicles (GVs), a class ofgenetically encodable gas-filled protein nanostructures that enable the use of ultrasound to image signaling pathways and control cellular behaviors. GVs were evolved in photosynthetic microbes, which express themintracellularly to float to the surface of water for maximal photosynthesis. Specific project areas for the T32 fellows include (1) the development of multi-color ultrasound imaging of engineered cells in centimeter-deep tissue for cancer research. (2) the use of GVs to study trackable and controllable tumor-homing bacteria by engineering bacteria that can be remotely controlled by focused ultrasound. The Lu lab will engineer endogenous bacterial residents to treat specific types of cancers such as glioblastoma, and the platform technology can be further extended to other types of tumors that have the presence of a rich microbiome.
Gas-Filled Protein Nanosturctures Lab
Kevin
McHugh, Ph.D. Assistant Professor
The McHugh
Lab has two projects that are focused on improving cancer treatment.
The first aims to use the unique properties of the lab’s core-shell
microparticles to deliver innate immunostimulatory molecules to evoke
immune activity in hepatocellular carcinoma. The second project aims
to use genome editing tools (i.e., CRISPR/Cas9) to develop a
personalized cancer immunotherapy based on the presence of
patient-specific cancerous mutations. After identifying a patient’s
unique cancer-driving mutations, we are designing formulations
consisting of Cas9 variants and guide RNA that only recognize and cut
the genome in cancer cells. Once cut, a co-delivered plasmid encoding
a cytotoxic protein that induces immunogenic cell death, eliciting an
immune response against cancer neoantigens.
McHugh Laboratory
Rebecca
Richards-Kortum, Ph.D. Stanley C. Moore Professor of
Bioengineering
Dr. Richards-Kortum’s laboratory develops
cost-effective optical imaging and spectroscopy tools to reduce the
incidence and mortality of cancer and infectious disease through early
detection at the point of care. In collaboration with MD Anderson, her
lab has developed novel cellular and molecular imaging technologies to
recognize signatures of earlyneoplastic disease. At the same time,
they have developed optically active, targeted nanoparticles and
fluorescent dyes to image directly the molecular hallmarks of cancer.
Through clinical trials at MD Anderson, Mount Sinai Medical Center,
and Tata Memorial Hospital in Mumbai, India, they have optimized these
agents and imaging systems, demonstrating that they can detect
precancerous lesions and early cancers in the oral cavity and the
esophagus with high sensitivity and specificity. More recently, they
initiated development ofmolecular-specific contrast agents and optical
micro-fluidic chips for point-of-care detection of infectious disease
through collaborations at Baylor College of Medicine and the
University of Texas Medical Branch in Galveston.
Optical Spectroscopy
and Imaging Laboratory
Laura Segatori, Ph.D. Professor
The Segatori Lab focuses on the development of sense-and-respond devices that detect highly dynamic environments with high sensitivity and dynamic resolution. Such cellular devices would provide a transformative technology for the development of diagnostic strategies for personalized medicine approaches and therapeutic systems for self-adjusted delivery. In particular, the smart delivery systems that self-adjust drug dosage would offers promise for the design of therapeutic modalities with limited induction of toxic side effects. Continuous delivery improves patient survival with fewer unwanted side effects, but it is extremely difficult to achieve and represents a burdensome option not always accessible to patients, pointing to the need for cellular devices that sense unwanted effects and adjust drug release. To address this need, the Segatori Lab builds cellular devices that adjust output production in response to expression signatures of unwanted side effects.
Segatori Lab
Jeff Tabor, Ph.D. Professor
The goal of his lab is to develop the intellectual and experimental foundations needed to reliably engineer life. The Tabor lab has extensive expertise in engineering new cellular sensors to a wide range of chemical and physical signals and use them in different applications, including cancer. Pathogenic bacteria utilize two-component system (TCS) signaling pathways to detect insults and other stimuli in vivo and activate virulence and antibiotic resistance phenotypes in response. The Tabor lab has ported TCSs into laboratory bacteria and replaced all native gene regulatory elements with well-characterized synthetic versions in order to unsilence these pathways in the laboratory. Dr. Tabor trains pre- or postdoctoral students in the synthetic biology and drug development studies, which could lead to new clinicallyrelevant drugs for dangerous antibiotic-resistant pathogens. In his 11 years at Rice, Dr. Tabor has advised 9 Ph.D. students and 7 postdoctoral researchers. Dr. Tabor currently has 7 PhD students.
Tabor Laboratory
Tomasz Tkaczyk, Ph.D. Professor
Dr. Tkaczyk’s research focuses on two aspects of technology development: (1) integrated optical devices for in vivo imaging at the cellular level and (2) snapshot multidimensional imaging modalities to enable rapid monitoring of time-dependent processes such as signaling. In tandem, these technologies enable multimodal, multiplexed, and dynamic approaches at the cellular level with use of nano-agents. An example of first technology includes ultra-slim, high-performance achromatic objectives that allow multi-contrast imaging. The second line of research, snapshot hyperspectral and spectro-polarimetric systems based or invented with Dr. Tkaczyk’s image mapping technology allow rapid identification and monitoring of time-dependent processes (e.g,. in imaging pancreatic β-cell dynamics).
Omid Veiseh, Ph.D. Assistant Professor
The Veiseh Lab has been working on peritoneal cancers such as ovarian, colorectal and pancreatic cancers, which are particularly challenging to address with traditional therapeutic approaches. The Veiseh Lab leverages a combination of synthetic biology, biomaterial design, immunoengineering to developclinically translatable immunotherapeutic approaches for the treatment of peritoneal cancers. Pro-inflammatory cytokines can trigger the expansion and activation of cytotoxic T and natural killer (NK) cells for cancer immunotherapy. However, their delivery by intravenous administration is associated with significant side effects. Thus, effective cytokine immunotherapy requires programmable spatial and temporal kinetics of cytokine delivery with tunable dosages and therapeutic windows to maintain immunostimulatory effect while avoiding the toxicity. By extending the half-life of the therapeutic payloads, preventing systemic toxicity, and paving the way for combination products, the novel platform developed in the Veiseh Lab tackles many unmet key challenges of cancer immunotherapy.
Veiseh Lab
Julea Vlassakis, Ph.D, Assistant Professor
Julea Vlassakis designs and applies micro and nanoscale single-cell and single molecule technologies to study proteins and their interactions with othe rmacromolecules. The over-arching goal of her lab is to advance treatment for Ewing sarcoma and other peditric cancers by identifing molecular markers for targeted therapies. Her lab innovates and investigates at the intersection of micro & nanoengineering design, systems & structural biology and cancer biochemistry & biophysics.
Department of Chemistry
Zachary
Ball, Ph.D. Professor
Zach Ball’s group
focusses on novel metal-based strategies for altering protein
function, inhibiting signaling pathways, and/or identifying and
validating cancer drug targets. The Ball lab has developed a set of
bioconjugation methodologies for preparing protein-drug conjugates, as
well as protein conjugates with polymers and nano-objects. One key
investigation involves the identification of a novel binding site on
the oncoprotein STAT3, using a rhodium-catalyzed approach to target
validation. We then developed anaphthalene sulfonamide class of STAT3
inhibitors and demonstrated efficacy in arresting the development of
chemotherapy-resistant acute myeloid leukemia (AML) in a mouse model.
Current work builds on novel protein chemistry to ensure
site-specific, homogeneous bioconjugation protocols for
antibody-targeted treatment andpolymer- and hydrogel-based
delivery.
The Ball Lab
Anne-Karin
Gustavsson, Ph.D. Assistant Professor
The
interdisciplinary work in our lab is focused on thedevelopment and
application of 3D single-molecule tracking and super-resolution
imaging throughout mammalian cells. We strive to gain detailed
information about cellular nanoscale structure, dynamics, and
molecular mechanisms by designing and applying innovative and
versatile imaging tools. The goal of our research is to improve our
understanding of cellular function and pathogenesis to answer
biophysical and biomedical questions related to cancers and other
diseases.
Gustavsson Lab
Stephen Link, Ph.D. Professor
The Link lab has been synthesizing gold nanoparticles with unique optical properties for cancer imaging and targeted therapy applications. However, concerns about their safety have stunted their representation in practice. All nanoparticles that enter biological fluids are immediately exposed toproteins, and it has been shown that the identity and conformation of proteins that adsorb to nanoparticles critically influences the nanoparticles’ stability and fate. The long-term goal of the Link lab is to understand protein adsorption and dynamics on nanoparticle surfaces forming a protein corona that affects the biological fate of any nanoparticle. Understanding the physiochemical interactions between proteins and nanoparticles has the potential for the design of nanoparticles with engineered protein coronas to improve efficacy and safety of nanoparticle-based cancer treatments.
Single Particle Plasmonics Lab
Han Xiao, Ph.D. Assistant Professor
The Xiao lab has been working on Ewing sarcoma (ES), which is the second most common pediatric bone cancer with peak incidence during the adolescent and young adult period. Projects in the Xiao lab include designing new therapeutic strategies against bone cancer cells anddevelop bone-targeting precision therapeutic biologics for the treatment of ES. One approach is based on site specific conjugation of bisphosphonates to antibodies to deliver a high concentration of therapeutic antibodies to the bone and activated within the acidic tumor microenvironment for better therapeutic efficacy and reduce adverse side effects associated with systemic delivery. This project will yield a collection of bone-targeting antibodies to enhance therapeutic profile on Ewing sarcoma.
Xiao Lab
MD Anderson Mentors
Department of Imaging Physics
James Bankson, Ph.D. Professor
Dr. Bankson leads the Magnetic Resonance Systems Lab at MD Anderson and is Deputy Director of the Small Animal Imaging Facility (SAIF). Dr. Bankson’s lab has developed novel instrumentation and acquisition methods for multi-animal imaging to reduce the cost and logistical burden of preclinical MRI incancer research. His group has also developed new acquisition and reconstructions to improve quantitative assessment of tumor tissue using dynamic contrast-enhanced MRI, and most recently, Dr. Bankson’s lab has focused on metabolic MRI using hyperpolarized imaging substrates. Dr. Bankson has co-authored nine manuscripts exploring the development and use of nanoparticles in cancer imaging and therapy.
Magnetic Resonance Systems Lab Small Animal Imaging Facility
Richard
Bouchard, Ph.D. Associate Professor
Dr.
Bouchard heads the Photoacoustic Imaging Research Lab and is a leader
of the SAIF photoacousic and ultrasound core. In this capacity, Dr.
Bouchard has pursued research investigations ranging from tumor
perfusion/vascularity imaging, assessment of cardiac function,
visualization oftargeted gold nanoparticles in a murine tumor model,
assessment and development of photoacoustic thermography, and the
development/characterization of novel mechanisms of contrast and
nano-scale contrast agents. Dr. Bouchard’s laboratory also pursues
development of novel photoacoustic imaging technologies for clinical
applications involving cancer detection/therapy monitoring and
monitoring of cardiac therapies.
Photoacoustic Imaging Research Lab
David
Fuentes, Ph.D. Associate Professor
Dr. Fuentes
has a strong interdisciplinary background in applied mathematics,
engineering, high-performance scientific computing, and mathematical
modeling of physics-based phenomena. His research motivation is to
obtain a working knowledge of the physics, limitations, and
approximations of the mathematical models inherent to imaging
acquisitions systems and nanotechnology mediated therapies. Active
research projects include mathematical modeling of
nanotechnology-mediated therapies to make predictions relevant to
clinical outcomes. Indeed, a mathematical model of
nanoparticle-mediated thermal therapy has been shown to predict the
selective heating observed during the image-guided procedure.
Computational Research Lab
Konstantin
Sokolov, Ph.D. Professor
The
research in Dr. Sokolov’s labs focuses on the development of
nanotechnology-based platforms for early detection, diagnosis, and
treatment of cancer. These studies are based on a fundamental
understanding of physico-chemical properties of nanoparticles and
interactions between nanomaterials and biological environment such as
cells and tissue. This knowledge ultimately leads to basic design
principles that allow harnessing of nano-scale material properties for
improved imaging and therapy of devastating diseases such as
cancer.
Biomedical Optics & NanoDiagnostics (BOND) Lab
Jia Wu,
Ph.D. Assistant Professor
Dr. Wu is directing an
independent research lab that applies quantitative imaging analysis
and machine learning algorithms to extract clinically relevant and
action able biomarkers from medical imaging to personalize cancer
patient management. He has been selected to join NCI Awardee Skills
Development Consortium (NASDC) and have taken systematical training to
further strengthen leadership capacity and enhance mentoring skills.
He is K99/R00 awardee and will share his insights with our T32
trainees regarding development of a successful career development
award.
Wu Laboratory
Clinical Faculty
John Hazle, Ph.D. Professor and Chair
Dr. Hazle conducts research on image guided therapy (IGT) and preclinical imaging. The IGT program is largely driven by techniques Dr. Hazle’s team developed for estimating temperature in vivo for both ablative and non-ablative thermal therapies. Several graduate students and post-doctoral fellows in the preclinical imaging program have gone on to academic careers. Dr. Hazle’s goal for theT32 is to continue to leverage the outstanding resources, both physical and intellectual, at MD Anderson for the education of the next generation of young scientists in biomedical imaging research using nanotechnologies.
Magnetic Relaxometry Research Laboratory Small Animal Imaging Facility
S. Cheenu Kappadath, Ph.D. Professor
Dr. Kappadath is a board-certified and licensed medical physicist with specialties in Nuclear Medicine Physics and Instrumentation (ABSNM) and Diagnostic Radiologic Physics (ABR) supporting clinical nuclear medicine and radiology. He is actively involved in a variety of prospective clinical trialsin 90Y-radioembolization and research projects in quantitative NM (SPECT/CT and PET/CT) imaging. Collaborating with numerous clinicians on several industry-funded grants, as Principal Investigator (PI) or Co-PI, he has helped advance the understanding of dosimetry and laid groundwork for dosimetry-based radioembolization research.
Kappadath Laboratory
Rick
R. Layman, Ph.D. Associate Professor
Dr. Layman
is a medical physicist with research interests in CT. He has an
outstanding record of teaching and mentoring junior colleagues. At MD
Anderson, Dr. Layman has directly mentored three fellows in the hybrid
Imaging Physics Fellowship where one was awarded the Best in Physics
award at the annual meeting for the American Association of Physicists
in Medicine. Two of the fellows currently have academic appointments
at top-tier medical centers. He leads the quantitative CT topics of
the funded R01 project that includes training a graduate student and
postdoc. Due to his efforts and success of mentoring graduate
students, fellows, and faculty, he was recently appointed to be the
Director of Faculty Development for the Department of Imaging Physics.
Ho-Ling
Anthony Liu, Ph.D. Professor
Dr. Liu is Program
Director and faculty mentor for the Imaging Physics Hybrid Residency
Program. In this role he has a deep commitment and long standing track
record supporting training and mentoring of graduate students,
postdocs, and residents at MD Anderson. He has mentored more than 20
graduate students, postdocs, visiting scientists, junior faculty and
supervised 15 physics residents over his career. These trainees have
gone on to successful careers in science and/or clinical imaging
physics, and manyof them are now university faculty. His research has
been focused on advanced MRI methods for studying brain function and
physiology. Dr. Liu has been closely collaborating with clinicians and
scientists in the fields of radiology, psychology, neurosurgery and
neuroscience, and serving as a principle investigator or a
coinvestigator in research grants.
Jingfei
Ma, Ph.D. Professor
Dr. Ma has been a leader in
the field of novel data acquisition strategies and image
reconstruction algorithms for phase-sensitive MRI, and applications
such as clinically practical whole-body MRI and abbreviated breast
MRI. His lab has been active and established a successful track record
in developing novel deep learning-based MRI techniques and in
optimizing and clinically validating advanced MRI techniques such as
diffusion weighted imaging, dynamic contrast enhanced imaging, MR
spectroscopy, and chemical saturation transfer imaging. He has a track
record of innovation with over 20 US and foreign patents (several of
which are implemented by leading MRI vendors and in active use by
world-wide customers). This experience will be leveraged to teach
patent application process to our T32 fellows. During his career, Dr.
Ma have mentored 9 graduate students (including 2 PhD candidates who
successfully defended their dissertation in the last 2 years), 4
postdocs, and 4 junior faculty on their research and career
development. These trainees have gone on to successful careers in
science and clinical imaging physics, including faculty and fellowship
positions in premiere institutions such as Mayo Clinic, Stanford, MD
Anderson, University of Texas Health Science Center.
Osama
Mawlawi, Ph.D. Professor
Dr. Mawlawi is working
on development of novel techniques for PET/CT image acquisition,
correction and reformation, as well as modeling the distribution of
novel radiotracers. He has co-authored over 90 peer reviewed articles
and book chapters and is the recipient of several grants from industry
and professional societies.
Tinsu
Pan, Ph.D. Professor
Dr. Pan is working on
improving the image quality of PET/CT, in particular on mitigation of
the impact from respiratory motion. He has extensive experiences in
imaging of the coronary artery and tumor motion in CT, and mitigation
of mis-registration and respiratory motion artifacts in PET/CT. He
designed the first prototype 4D CBCT for image-guided radiotherapy on
a Varian Trilogy machine as well as the first prototype 4DPET/CT to
improve quantitative accuracy of the lung tumor. He also invented
average CT to improve registration of the CT and PET data, which has
been incorporated in routine PET/CT imaging at MD Anderson to mitigate
the mis-registration artifacts between the CT and PET data. Dr. Pan is
also interested in bringing the benchtop research results to the
clinic as demonstrated by his efforts in clinical implementation of
average CT, 4D-CT, 4DCBCT and cardiac CT.
Jason
Stafford, Ph.D. Professor
Dr. Stafford has a
primary research and clinical focus on MR-guided interventions and
therapies. He has a broad background in medical physics, with specific
expertise in imaging physics, including MRI and ultrasound. He has
developed, validated, and clinically implemented methods for MR
temperature imaging applied to focused ultrasound, interstitial
ultrasound, laser, and nanoparticle-mediated thermal therapies on
clinical MRI scanners. Dr. Stafford has extensive experience in
successfully overseeing projects in MR-guided interventions that have
covered everything from inception to clinical implementation. He has
also written and implemented numerous IACUC approved small and large
animal protocols for investigations of MR-guided interventions as well
a sparticipated in the writing and execution of approved IRB
protocols. He is also a member of the Medical Physics education
program and has mentored graduate engineering and physics students
from that program, UT Austin, Rice University, and University of
Houston. He has also mentored several postdoctoral fellows. Department
of Cancer Systems Imaging
Cancer Systems Imaging
Pratip Bhattacharya, Ph.D. Associate Professor
Dr. Bhattacharya develops MR hyperpolarization techniques and metabolicand molecular imaging probes to enhance the sensitivity of current in vivo MR methods for disease diagnosis, particularly in cancer and cardiovascular diseases. Over the past eight years, his laboratory has worked on the development of different modalities of hyperpolarized NMR like Parahydrogen Induced Polarization (PHIP), Dynamic Nuclear Polarization (DNP), Continuous Flow DNP of water and solidstate DNP processes of silicon particles and developed applications in various types of cancer and cardiovascular diseases. The trainees from his laboratory have gone on to develop scholarship and independent careers in next generations of parahydrogen polarizer and hyperpolarized metabolic imaging probes.
Bhattacharya Laboratory
H.
Charles Manning, Ph.D. Professor
Dr. Manning is
a chemist with a background in radiochemistry, medicinal chemistry and
imaging science. His laboratory has focused on the discovery,
translation, and validation of chemical and molecular probes for
cancer imaging and therapy. Dr. Manning is the Scientific Director of
the Center for Advanced Biomedical Imaging (CABI). His laboratory
discovers and translates novel radiopharmaceuticals and chemical
probes, with emphasis on positron emission tomography (PET) imaging.
The lab is very interested in quantifying cellular metabolism
non-invasively, including high-affinity ligands for receptor-based
targets and metabolic substrate transporters elevated in cancer
cells.
Manning Laboratory
Steven Millward, Ph.D. Associate Professor
Dr. Millward seeks to combine chemistry, directed evolution, and nanotechnology to develop activity- and metabolism-based probes for visualizing cell death and inflammation using optical, magnetic, and nuclear imaging platforms. His work has demonstrated that peptides can be readily adapted for molecular imaging through both rational design and directed evolution. During the previous training grant period Dr. Millward served as the instructor and course coordinator for the T32 summer course “CancerBiology, Imaging, and Therapeutics” which was designed to provide a foundation in cancer biology for incomingT32 trainees. He has also served as a faculty mentor for the NCI-funded MD Anderson Cancer Prevention Research Training Program R25 training grant (R25CA057730-21) and was awarded the Robert M. Chamberlin Distinguished mentor award in 2016.
Department of Radiation Physics
Sang
Hyun Cho, Ph.D. Professor
Dr. Cho has
devoted much of his recent research effort to develop cancer
diagnostic/therapeutic applications using gold and other metal
nanoparticles. Specifically, he has been investigating strategies to
deliver tumor-specific radiation and thermal therapy by taking
advantages of gold nanoparticle-mediated dose
enhancement/radiosensitization and plasmonic heating, respectively,
and preclinical molecular imaging in conjunction with x-ray
fluorescence computed tomography (XFCT). Dr. Cho’s research program
covers a wide spectrum of research topics ranging from traditional
medical physics to nanotechnology including: (1) Quantification of
gold nanoparticle-mediated radiation dose enhancement using
experimental and computational techniques; (2) Modeling of gold
nanoparticle-mediated radiation response modulation using
cellular-/nano-scale Monte Carlo simulations; (3) Development of
abenchtop XFCT device for multimodal molecular imaging; (4)
Development of x-ray fluorescence imaging techniques with gold
nanoparticles and other metal probes; and (5) Quantification of
plasmonic heat generation due to gold nanoparticles and near-infrared
light using experimental and computational techniques.
Clinical Program Faculty
Erik N. K. Cressman, Ph.D. Associate Professor, Interventional Radiology
Dr. Cressman is a clinician and scientist who is using minimally invasive image-guided techniques for diagnostic and therapeutic procedures on a daily basis. Therefore, he is well aware of the limitations of existing methods and actively search for ways to improve treatment. His background as a chemist with industrial experience prior to becoming an interventional radiologist provides a unique perspective to see opportunities not otherwise apparent. He established the Image-Guided Chemistry Lab (ICGL) and has built a group with multidisciplinary collaborations in related areas including thermal imaging and stress responses. As a physician scientist working in a medical education setting, he has mentored over 70 trainees ranging from undergraduates and medical students to graduate students and postdocs. A number of these trainees have gone on to win multiple grants, awards and scholarships.
Image-Guided Chemistry Laboratory
Laurence E. Court, Ph.D. Associate Professor, Radiation Physics - Patient Care
Dr. Court is leading a research group of around 25 researchers (PhD students, faculty and computational scientists), focusing on the development of tools to support access to radiation therapy in low-resource settings. The specific strength of the group is the application of artificial intelligence to radiotherapy, including quality management processes throughout research and development, ensuring a smooth translation to clinical use at our own clinic and across the world.
Court Laboratory
Anil K.
Sood, M.D. Professor of Gynecologic Oncology &
Reproductive Medicine
Dr. Sood's research focuses on developing
new therapies aimed at the tumor microenvironment, understanding the
mechanisms of RNA interference and developing new approaches for using
non-coding RNAs for therapy (developed a first-in-humansiRNA
therapeutic), and finding solutions to overcome the deleterious
effects of adrenergic signaling on cancergrowth and progression. Dr.
Sood has published numerous peer-reviewed articles, has authored and
coauthored several book chapters, and serves on the editorial board
for several journals. He was selected as an American Cancer Society
Research Professor and an elected fellow of the AAAS.
Our Labs
Learn more about our faculty and research taking place in our labs.
Conferences
View conferences available for continuing education credit.