- Diseases
- Acoustic Neuroma (14)
- Adrenal Gland Tumor (24)
- Anal Cancer (66)
- Anemia (2)
- Appendix Cancer (16)
- Bile Duct Cancer (28)
- Bladder Cancer (68)
- Brain Metastases (28)
- Brain Tumor (228)
- Breast Cancer (712)
- Breast Implant-Associated Anaplastic Large Cell Lymphoma (2)
- Cancer of Unknown Primary (4)
- Carcinoid Tumor (8)
- Cervical Cancer (154)
- Colon Cancer (164)
- Colorectal Cancer (110)
- Endocrine Tumor (4)
- Esophageal Cancer (42)
- Eye Cancer (36)
- Fallopian Tube Cancer (6)
- Germ Cell Tumor (4)
- Gestational Trophoblastic Disease (2)
- Head and Neck Cancer (6)
- Kidney Cancer (124)
- Leukemia (344)
- Liver Cancer (50)
- Lung Cancer (288)
- Lymphoma (284)
- Mesothelioma (14)
- Metastasis (30)
- Multiple Myeloma (98)
- Myelodysplastic Syndrome (60)
- Myeloproliferative Neoplasm (4)
- Neuroendocrine Tumors (16)
- Oral Cancer (98)
- Ovarian Cancer (172)
- Pancreatic Cancer (166)
- Parathyroid Disease (2)
- Penile Cancer (14)
- Pituitary Tumor (6)
- Prostate Cancer (144)
- Rectal Cancer (58)
- Renal Medullary Carcinoma (6)
- Salivary Gland Cancer (14)
- Sarcoma (234)
- Skin Cancer (294)
- Skull Base Tumors (56)
- Spinal Tumor (12)
- Stomach Cancer (60)
- Testicular Cancer (28)
- Throat Cancer (90)
- Thymoma (6)
- Thyroid Cancer (98)
- Tonsil Cancer (30)
- Uterine Cancer (78)
- Vaginal Cancer (14)
- Vulvar Cancer (18)
- Cancer Topic
- Adolescent and Young Adult Cancer Issues (20)
- Advance Care Planning (10)
- Biostatistics (2)
- Blood Donation (18)
- Bone Health (8)
- COVID-19 (362)
- Cancer Recurrence (120)
- Childhood Cancer Issues (120)
- Clinical Trials (622)
- Complementary Integrative Medicine (22)
- Cytogenetics (2)
- DNA Methylation (4)
- Diagnosis (224)
- Epigenetics (6)
- Fertility (62)
- Follow-up Guidelines (2)
- Health Disparities (14)
- Hereditary Cancer Syndromes (122)
- Immunology (18)
- Li-Fraumeni Syndrome (8)
- Mental Health (116)
- Molecular Diagnostics (8)
- Pain Management (64)
- Palliative Care (8)
- Pathology (10)
- Physical Therapy (18)
- Pregnancy (18)
- Prevention (882)
- Research (384)
- Second Opinion (74)
- Sexuality (16)
- Side Effects (598)
- Sleep Disorders (10)
- Stem Cell Transplantation Cellular Therapy (216)
- Support (404)
- Survivorship (324)
- Symptoms (182)
- Treatment (1764)
Chromatin Speaks! Cell Signal Receiver also Found To Transmit
2 minute read | Published September 02, 2011
Medically Reviewed | Last reviewed by an MD Anderson Cancer Center medical professional on September 02, 2011
A blend of histone proteins and DNA that packs genes into chromosomes, chromatin influences gene expression, DNA repair and chromosome recombination.
Scientists at The University of Texas MD Anderson Cancer Center, writing this week in the journal Cell, have identified another function - signaling molecule. Chromatin is on the receiving end of signaling pathways that turn genes off and on, but research by Sharon Dent, Ph.D., and colleagues found that chromatin talks back.
"It's a basic change in our way of thinking about cell signaling - that all signals go into the nucleus and dead-end at DNA, that they point to chromatin and stop," says Dent, professor and chair of MD Anderson's Department of Molecular Carcinogenesis and director of its Center for Cancer Epigenetics.
"Our data show that's not the case. We have a new fundamental aspect of cellular regulation that we need to now explore," Dent says.
In a series of yeast experiments, Dent and colleagues show that a signal through a histone protein regulates another protein called Dam1 that is involved in the separation of chromosomes during cell division.
The crucial step is the attachment of a single signaling molecule called ubiquitin to a histone protein called H2B. This event was known to direct addition of methyl groups to histone H3, but Dent's work indicates it is also required for methylation of Dam1.
Communication between H2B and Dam1 is the first such instance of cross-talk between histone and non-histone proteins, the authors report. The signaling connection between a chromatin change and a non-DNA-templated process such as chromosome separation is also new.
Connections between histone ubquitination and histone methylation also occur in human cells, and mutations in a protein highly related to Set1, called MLL, are involved in leukemia. Dent's work raises the possibility that histones can signal to non-histone proteins in human cells and that mismanagement of these events caused by MLL mutations might contribute to leukemia development.
Resources News release-UT MD Anderson Scientists Discover Secret Life of Chromatin
The Cell paper: Chromatin Signaling to Kinetochores