Table of Contents

Patient Initial Evaluation.. Page 2
APPENDIX A: Checklist/Supportive Care Considerations for Managing Patients Receiving IEC Therapy....................... Pages 3-6
APPENDIX B: Infectious Disease Screening.. Page 7
APPENDIX C: Infection Prophylaxis Considerations for IEC Therapy... Page 8-10
APPENDIX D: Grading of CRS.. Page 11
APPENDIX E: Grading of ICANS... Page 12
APPENDIX F: Immune Effector Cell-associated Encephalopathy (ICE) score... Page 13
APPENDIX G: Management of CRS... Pages 14-17
APPENDIX H: Management of ICANS... Pages 18-20
APPENDIX I: Interleukin-6 (IL-6) Antagonists and Alternative Agents Dosing Table... Page 21
APPENDIX J: Management of Focal or Generalized Convulsive or Non-Convulsive Seizures... Page 22
APPENDIX K: Management of Convulsive Status Epilepticus.. Page 22
APPENDIX L: Management of Diffuse Cerebral Edema and/or Raised Intracranial Pressure... Page 23
APPENDIX M: Diagnostic Criteria for CAR-Related Hemophagocytic Lymphohistiocytosis (HLH) or Macrophage Activation Syndrome (MAS).. Page 24
APPENDIX N: Determine if the Subject Has Allogeneic IEC-associated GVHD.. Page 25
APPENDIX O: Determine the Grade of IEC-associated Acute GVHD... Page 25
APPENDIX P: Manage IEC-associated Acute GVHD.. Page 26
Suggested Readings.. Page 27
Development Credits... Page 28

CAR = Chimeric Antigen Receptor ICANS = immune effector cell-associated neurotoxicity syndrome GVHD = graft versus host disease
CRS = cytokine release syndrome IEC = immune effector cells
I厮EC Therapy Toxicity Assessment and Management (also known as CARTOX) – Adult

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.

INITIAL EVALUATION

Patient anticipated to receive IEC therapy

See Appendix A for Supportive Care and Appendices B and C for Infection Screening and Prophylaxis Considerations

Patient received IEC cell therapy

Monitoring of patient after cell infusion per protocol to include:
- Vital signs
- History
- Lab results
- As clinically indicated: cardiac monitor, EKG, ECHO and chest x-ray

MANAGEMENT

Does patient have either?

- Yes
 - See Appendix G for Management of CRS
 - See Appendix H for Management of ICANS

- No

Determine if patient has cytokine release syndrome (CRS)\(^1\) and/or immune effector cell-associated neurotoxicity syndrome (ICANS)\(^2\)

Determine the grade of CRS\(^3\) and/or ICANS\(^4\)

\(^1\)If the subject has fever with or without hypotension or hypoxia within the first 4 weeks of engineered immune effector cell (IEC) therapy, the subject may have CRS if the symptoms or signs are not attributable to any other cause

- Fever should be present at onset of CRS (temperature $\geq 38^\circ C$)
- Hypotension (requiring IV fluids or vasopressors to maintain normal blood pressure)
- Hypoxia (requiring supplemental oxygen to correct a deficit in oxygenation)

\(^2\)If the subject has any of the following within the first 8 weeks of engineered IEC therapy, the subject may have ICANS if the symptoms or signs are not attributable to any other cause

- IEC-Associated Encephalopathy (ICE) Score of less than 10 (Appendix F)
- Depressed level of consciousness
- Convulsive or non-convulsive seizures (can be focal or generalized)
- Motor weakness (can be focal motor weakness, hemiparesis, paraparesis)
- Focal / diffuse cerebral edema on imaging or signs of raised intracranial pressure including decerebrate or decorticate posturing, cranial nerve VI palsy, papilledema, or Cushing’s triad

\(^3\)See Appendix D for Grading of CRS

\(^4\)See Appendix E for Grading of ICANS
For Inpatients or Outpatients:

Before and During IEC Infusion

- Imaging of the brain prior to IEC infusion (preferably MRI with and without contrast but CT without contrast is acceptable if MRI cannot be performed) to rule out any central nervous system disease and also to serve as a baseline for comparison in case the patient develops ICANS
 - For patients with known history of seizures, migraines and/or other CNS disorders including malignant disease, consider Neurology consult prior to IEC infusion
- Central venous access with port-a-cath or double/triple lumen catheter is recommended for IEC infusion as well as for IV fluids and other infusions in case of toxicities
- IEC infusion may be administered either in the ambulatory unit or in the inpatient unit
- If the median time to onset of CRS is expected to be < 48 hours, hospitalization should be considered for IEC infusion
- When hospitalized, admission to an IEC-designated unit with capability for cardiac monitoring by telemetry is recommended
- Tumor lysis precautions for patients with high tumor burden, as per standard guidelines
- Seizure prophylaxis with levetiracetam 500-750 mg PO every 12 hours for 30 days, starting on the day of infusion for IEC therapies associated with a high incidence of ICANS, in patients with history of seizures or brain metastases
- Consider filgrastim products if patient is neutropenic and concern for infection (if not already receiving)
- Ensure appropriate documentation in EHR regarding IEC therapy and “conditional” corticosteroid contraindication

APPENDIX A: Checklist / Supportive Care Considerations for Managing Patients Receiving IEC Therapy

Continued on next page
For Outpatients:

Patient Monitoring After IEC infusion (for at least 14 days post-IEC infusion)
- Assess and record vital signs at least once daily in clinic
- Daily weights
- Daily review of patient history and physical examination
- Daily complete blood count with differential and complete metabolic profile
- Coagulation profile at least twice weekly
- Consider monitoring C-reactive protein (CRP) and ferritin levels daily during the phase when CRS is likely to occur and then as needed thereafter
- Consider cytokine panel if clinically indicated
- Assessment and grading of CRS (document in CARTOX flowsheet) at least daily and if a change in patient status while in clinic
- Assessment and grading for ICANS (document in CARTOX flowsheet) at least daily including 10-point ICE score assessment

Supportive Care
- Encourage oral fluid intake to ensure adequate hydration
- IV fluids as needed

Patient Home Monitoring (provide patient with a log to document and bring daily to clinic visits and dictate the findings from home log in each clinic note)
- Provide patient with self-care instructions and team contact information
- Provide patient with guidance for when to report to the emergency center
- Oral temperature every evening
- ICE-score with sentence writing every evening

Considerations for Admission
- Temperature $\geq 38^\circ C$
- SBP < 90 mmHg
- New arrhythmia
- Upward trend in liver function tests and/or creatinine
- Oxygen saturation $< 92\%$ on room air
- Tremors or jerky movements in extremities
- Grade 1 CRS or greater
- Grade 1 ICANS or greater

APPENDIX A: Checklist / Supportive Care Considerations for Managing Patients Receiving IEC Therapy - continued

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.
APPENDIX A: Checklist / Supportive Care Considerations for Managing Patients Receiving IEC Therapy - continued

<table>
<thead>
<tr>
<th>For Inpatients:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Monitoring After IEC infusion</td>
</tr>
<tr>
<td>• Assess vital signs every 4 hours (inpatient encounter)</td>
</tr>
<tr>
<td>• Strict monitoring of oral and IV fluid input and output (including urine and stool)</td>
</tr>
<tr>
<td>• Daily measurement of body weight</td>
</tr>
<tr>
<td>• Daily review of patient history and physical examination</td>
</tr>
<tr>
<td>• Daily complete blood count with differential and complete metabolic profile</td>
</tr>
<tr>
<td>• Coagulation profile at least twice weekly or more frequently if clinically indicated</td>
</tr>
<tr>
<td>• Consider monitoring C-reactive protein (CRP) and ferritin levels daily during the phase when CRS is likely to occur and continue to monitor until CRS and/or ICANS resolves (if present).</td>
</tr>
<tr>
<td>Monitor as needed thereafter</td>
</tr>
<tr>
<td>• Consider cytokine panel if clinically indicated</td>
</tr>
<tr>
<td>• Assessment and grading of CRS (document in CARTOX flowsheet) should be completed at least every 12 hours and whenever there is a change in patient’s status</td>
</tr>
<tr>
<td>• Assessment and grading for ICANS (document in CARTOX flowsheet) should be completed at least every 12 hours including the 10-point ICE score assessment</td>
</tr>
<tr>
<td>• Maintenance IV fluids with normal saline to ensure adequate hydration</td>
</tr>
<tr>
<td>• Cardiac monitoring by telemetry is recommended for ≥ Grade 1 CRS and continued until CRS resolves</td>
</tr>
<tr>
<td>• For post-IEC infusion headache that is unresponsive to analgesics, consider brain imaging and lumbar puncture</td>
</tr>
<tr>
<td>• Neurology consult recommended for patients who develop Grade 1 or higher ICANS</td>
</tr>
<tr>
<td>• Critical Care and/or MERIT team will follow patients on an as-needed basis</td>
</tr>
<tr>
<td>• Infectious Diseases team will follow patients on an as-needed basis</td>
</tr>
<tr>
<td>○ Consult should be performed early for patients with positive infectious disease screening or for persistent fevers</td>
</tr>
</tbody>
</table>

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.

IEC Therapy Toxicity Assessment and Management (also known as CARTOX) – Adult

Department of Clinical Effectiveness V3 Approved by the Executive Committee of the Medical Staff on 11/19/2019

Copyright 2019 The University of Texas MD Anderson Cancer Center
For Inpatients:

Notifications and contingency orders

- Notify primary physician on detection of any of the following:
 - SBP > 140 or < 90 mmHg
 - Heart rate > 120 or < 60 beats per minute or arrhythmia
 - Respiratory rate > 25 or < 12 breaths per minute
 - Oxygen saturation < 92% on room air
 - Urine output < 1.500 mL/24 hours or 60 mL/hour
 - Upward trends in creatinine or liver function tests
 - Tremors or jerky movements in extremities
 - Change in mental status (alertness, orientation, speech, ability to write a sentence, or ICE score of < 10)
- For temperature ≥ 38°C, send blood cultures (central and peripheral) and urine for urinalysis and culture, obtain portable chest x-ray, and notify physician
- For patients with neutropenia and fever, start empiric broad-spectrum antibiotics
- Do not administer corticosteroids unless approved by physician
- If patient develops ICANS, withhold oral intake of food, fluids, and medicines, and notify physician
- PRN medications
 - Acetaminophen (1st choice) or ibuprofen (2nd choice, if not contraindicated) for fever ≥ 38.3°C
 - Cooling blanket for fever ≥ 38.3°C
 - Normal saline 500 - 1000 mL bolus prn for hypotension; may repeat once if patient remains hypotensive after 1st bolus
 - Transfuse packed red blood cells (PRBC) to maintain hemoglobin > 8 gm/dL
 - Transfuse platelets to maintain > 10 K/microliter; for patients with abnormal brain imaging, see recommendations as in Grades 3 and 4 ICANS
 - PRN tocilizumab to be activated only on physician order (“ok to give tocilizumab” order should be placed if dose approved by physician)
Infectious Disease Screening (within 30 days prior to apheresis is recommended)

<table>
<thead>
<tr>
<th>Required Infectious Disease Screening¹</th>
<th>Optional Infectious Disease Screening (as clinically indicated)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hepatitis B surface antigen (HBsAg)</td>
<td>• Anti-human T-cell lymphotrophic virus (HTLV) antibody (HTLV I/II Ab)</td>
</tr>
<tr>
<td>• Anti-hepatitis B core antibody (HBeAb)</td>
<td>• Rapid Plasma Reagin (RPR) – syphilis</td>
</tr>
<tr>
<td>• Anti-hepatitis C virus antibody (HCVAb)</td>
<td>• Cytomegalovirus (CMV) IgG and IgM</td>
</tr>
<tr>
<td>• Anti-human immunodeficiency virus (HIV) antibody (HIV type 1 / 2 type O Ab)</td>
<td>• West Nile Virus nucleic acid test</td>
</tr>
<tr>
<td>• HIV-1 / HCV / HBV Nucleic Acid Test</td>
<td>• T Cruzi antibody</td>
</tr>
<tr>
<td></td>
<td>• Strongyloides antibody to assess for previous infection or exposure</td>
</tr>
<tr>
<td></td>
<td>• T-spot to assess for exposure or history of tuberculosis</td>
</tr>
</tbody>
</table>

¹Primary team should follow up on all testing and order follow up testing and consults as indicated prior to proceeding to IEC therapy
²Patients with recent travel out of the country should be considered for some/all of these additional tests
APPENDIX C: Infection Prophylaxis Considerations for IEC Therapy

Most patients who receive immune effector cells receive a fludarabine-based chemotherapy regimen prior to IEC infusion. Fludarabine causes immunosuppression and can increase the risk of opportunistic infections. Additionally, patients who receive IEC therapies targeting B-cell are at increased risk of infection due to B-cell aplasia.

<table>
<thead>
<tr>
<th>Prophylaxis</th>
<th>Preferred Medication</th>
<th>Alternative Medication(s)</th>
<th>Start</th>
<th>Stop</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral</td>
<td>Valacyclovir(^1) 500 - 1,000 mg PO daily</td>
<td>Acyclovir(^1) 400 - 800 mg PO twice daily</td>
<td>IEC infusion day</td>
<td>At least 1 year post IEC infusion; may stop after 1 year if CD4 count < 200 cells/microliter</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consider Infectious Disease and/or Hepatology consult if not already following. Monitor HBV DNA PCR once a month while on prophylaxis and for a year after stopping. Consult Infectious Diseases if entecavir cannot be used or if DNA PCR detectable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consult Infectious Diseases if patient is allergic to quinolones and cephalosporins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Entecavir(^1) 0.5 mg PO daily</td>
<td>Tenofovir alafenamide 25 mg PO daily or Tenofovir disoproxil fumarate(^1) 300 mg PO daily</td>
<td>2 weeks before IEC</td>
<td>12-24 months post IEC</td>
<td></td>
</tr>
<tr>
<td>(only for patients who are positive for HBsAg or HBcAb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterial</td>
<td>Levofloxacin(^1) 500 mg PO or IV daily</td>
<td>Cefpodoxime(^1,2) 200 mg PO twice daily or Ciprofloxacin(^1) 500 mg PO twice daily</td>
<td>IEC infusion day or when ANC ≤ 0.5 K/microliter</td>
<td>Continue until ANC > 0.5 K/microliter for 3 consecutive days without growth factor support</td>
<td>Consult Infectious Diseases if patient is allergic to quinolones and cephalosporins</td>
</tr>
<tr>
<td>(if neutropenia with ANC < 1 K/microliter is expected to last ≥ 7 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANC = absolute neutrophil count

\(^1\) Adjust for renal function

\(^2\) Cefpodoxime does not cover pseudomonas

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.

IEC Therapy Toxicity Assessment and Management (also known as CARTOX) – Adult

Department of Clinical Effectiveness V3

Approved by the Executive Committee of the Medical Staff on 11/19/2019
APPENDIX C: Infection Prophylaxis Considerations for IEC Therapy - continued

Most patients who receive immune effector cells receive a fludarabine-based chemotherapy regimen prior to IEC infusion. Fludarabine causes immunosuppression and can increase the risk of opportunistic infections. Additionally, patients who receive IEC therapies targeting B-cell are at increased risk of infection due to B-cell aplasia.

<table>
<thead>
<tr>
<th>Prophylaxis</th>
<th>Preferred Medication(s)</th>
<th>Alternative Medication(s)</th>
<th>Start</th>
<th>Stop</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Pneumocystis jiroveci | Pentamidine inhaled or IV\(^1\) within 1 week of IEC infusion and then transition to sulfamethoxazole/trimethoprim (SMZ/TMP) (preferred post-IEC infusion) by 3-4 weeks if counts have recovered:
 - 1 double strength tablet PO every M, W, F or
 - 1 single strength tablet PO daily or
 - 1 double strength tablet PO twice daily for two consecutive days/week | Pentamidine inhaled 300 mg flat dose every 28 days
 Pentamidine\(^1\) IV 4 mg/kg (max 300 mg) every 21 days
 Dapsone 100 mg PO daily or 50 mg PO every 12 hours
 Atovaquone 1,500 mg PO daily | Within 1 week prior to IEC infusion
 Within 1 week prior to IEC infusion
 Within 3-4 weeks post IEC infusion | At least 1 year post IEC infusion; may stop after 1 year if CD4 count > 200 cells/microliter
 At least 1 year post IEC infusion; may stop after 1 year if CD4 count > 200 cells/microliter
 At least 1 year post IEC infusion; may stop after 1 year if CD4 count > 200 cells/microliter | SMZ/TMP also has activity against toxoplasma and nocardia
 Albuteor nebulizer premedication encouraged
 Can cause pancreatitis
 Check G6PD level
 Use caution if patient has sulfa allergy
 Can cause hemolytic anemia
 Must take with a fatty meal. Also has activity against toxoplasma, but inferior to SMZ/TMP. |

\(^1\) Adjust for renal function
APPENDIX C: Infection Prophylaxis Considerations for IEC Therapy - continued

<table>
<thead>
<tr>
<th>Prophylaxis</th>
<th>Preferred Medication</th>
<th>Alternative Medication</th>
<th>Start</th>
<th>Stop</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungal (low risk)</td>
<td>Fluconazole¹ 200 - 400 mg PO or IV daily</td>
<td>Caspofungin 50 mg IV daily²</td>
<td>IEC infusion day</td>
<td>Continue until ANC > 0.5 K/microliter for 3 consecutive days without growth factor support</td>
<td>-</td>
</tr>
<tr>
<td>Fungal (high risk)³</td>
<td>Posaconazole 300 mg PO (as tablets) or IV daily²</td>
<td>Caspofungin 50 mg IV daily²</td>
<td>IEC infusion day or when high-risk criteria are met</td>
<td>Continue as clinically indicated³</td>
<td>-</td>
</tr>
<tr>
<td>Human Immunodeficiency Virus (HIV)</td>
<td>Antiretroviral Therapy (ART) and monitoring per ID recommendations. Obtain an ID consult on any patient with HIV.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMV</td>
<td>Routine CMV prophylaxis is not required but CMV monitoring by PCR is recommended 1-2 times a week if neutropenia lasts ≥ 14 days, if patient experiences Grade 3 or 4 CRS/ICANS, or if patient develops hemophagocytic lymphohistiocytosis (HLH)⁴. CMV monitoring is recommended for at least 30 days after completion of corticosteroids.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunoglobulin replacement therapy</td>
<td>Hypogammaglobulinemia may be observed after IEC therapies that target B-cells and IgG levels should be checked in such patients when they develop respiratory infections. Immunoglobulin replacement therapy and/or prophylaxis is only indicated for patients who develop hypogammaglobulinemia and recurrent infections.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolonged cytopenias</td>
<td>Grade 3 or 4 cytopenias lasting beyond day 30 have been reported in approximately 30% of patients after IEC therapies. Cytopenias may be managed with filgrastim products; monitor blood counts at least weekly. Continue appropriate prophylactic antimicrobials as described above. Diagnostic bone marrow may be performed to rule out other causes such as myelodysplasia, malignancy, HLH⁴, or infection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Adjust for renal function
² Loading dose of antifungals is not needed if it is being used for prophylaxis
³ Posaconazole prophylaxis is recommended for HIGH RISK patients with leukemia, recent allogenic stem cell transplant, prior history of mold infection, neutropenia lasting ≥ 14 days, Grade 3 or 4 CRS/ICANS, those who receive ≥ 3 days of corticosteroids, or those who develop hemophagocytic lymphohistiocytosis (HLH) (see Appendix M). If corticosteroids are given, continue posaconazole for at least 1 month AFTER COMPLETION of corticosteroids. Do not stop posaconazole prophylaxis if ANC < 1 K/microliter. Voriconazole or isavuconazole may be used if the patient had previously been taking them or if posaconazole is not covered by insurance. In the event posaconazole, voriconazole, isavuconazole, or an echinocandin are contraindicated or pose affordability/access issues, then use fluconazole for prophylaxis and consider aspergillus antigen testing at least once a week DURING corticosteroids and for at least a month AFTER completion of corticosteroids. Patients not meeting high risk definitions will be considered to be at LOW RISK for fungal infections and receive prophylaxis as detailed above.
⁴ See Appendix M for Diagnostic Criteria for IEC-associated Fulminant Hemophagocytic Lymphohistiocytosis (HLH) or Macrophage Activation Syndrome (MAS)
APPENDIX D: ASTCT Grading for CRS¹

(Note: CRS grade should be determined at least twice daily and any time there is a change in patient’s status)

<table>
<thead>
<tr>
<th>CRS Parameter</th>
<th>CRS Grade 1</th>
<th>CRS Grade 2</th>
<th>CRS Grade 3</th>
<th>CRS Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever²</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>With</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotension³</td>
<td>No</td>
<td>Requiring IV fluids but not requiring vasopressors</td>
<td>Requiring one vasopressor with or without vasopressin</td>
<td>Requiring multiple vasopressors (excluding vasopressin)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>And/Or</td>
<td></td>
</tr>
<tr>
<td>Hypoxia³</td>
<td>No</td>
<td>Requiring low-flow O₂ via nasal cannula⁴ or blow-by</td>
<td>Requiring O₂ via high-flow nasal cannula⁴, facemask, non-rebreather mask, or Venturi mask</td>
<td>Requiring O₂ via positive pressure (e.g., CPAP, BiPAP, and mechanical ventilation)</td>
</tr>
</tbody>
</table>

³ Organ toxicities associated with CRS may be graded according to CTCAE v5.0 but they do not influence CRS grading
² Fever is defined as temperature ≥ 38°C not attributable to any other cause. In patients who have CRS then receive antipyretics or anti-inflammatory therapy such as tocilizumab or corticosteroids, fever is no longer required to grade subsequent CRS severity. In this case, CRS grading is driven by hypotension and/or hypoxia.
³ CRS grade is determined by the more severe event: hypotension or hypoxia not attributable to any other cause. For example, a patient with temperature of 39.5°C, hypotension requiring one vasopressor and hypoxia requiring low-flow nasal cannula is classified as having Grade 3 CRS.
⁴ Low-flow nasal cannula is defined as oxygen (O₂) delivered at less than or equal to 6 liters/minute. Low flow also includes blow-by oxygen delivery, sometimes used in pediatrics.

CPAP = continuous positive airway pressure
BiPAP = bilevel positive airway pressure

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.
APPENDIX E: ASTCT Grading of ICANS\(^1\)

<table>
<thead>
<tr>
<th>Symptom/Sign</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICE Score(^2)</td>
<td>7-9</td>
<td>3-6</td>
<td>0(^3)-2</td>
<td>0(^3) (patient is unarousable and unable to perform ICE)</td>
</tr>
<tr>
<td>Depressed level of consciousness(^4)</td>
<td>Awakens spontaneously</td>
<td>Awakens to voice</td>
<td>Awakens only to tactile stimulus</td>
<td>Patient is unarousable or requires vigorous or repetitive tactile stimuli to arouse; stupor or coma</td>
</tr>
<tr>
<td>Seizure</td>
<td>-</td>
<td>-</td>
<td>Any clinical seizure (focal or generalized) that resolves rapidly (< 5 minutes) or non-convulsive seizures on EEG that resolve with intervention</td>
<td>Life-threatening prolonged seizure (≥ 5 minutes) or repetitive clinical or electrical seizures without return to baseline in between</td>
</tr>
<tr>
<td>Motor findings(^5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Deep focal motor weakness such as hemiparesis or paraparesis</td>
</tr>
<tr>
<td>Raised intracranial pressure(^6) / cerebral edema</td>
<td>-</td>
<td>-</td>
<td>Focal/local edema on neuroimaging(^7)</td>
<td>Diffuse cerebral edema on neuroimaging, decerebrate or decorticate posturing, cranial nerve VI palsy, papilledema, or Cushing's triad</td>
</tr>
</tbody>
</table>

EEG = electroencephalogram

\(^1\) ICANS grade is determined by the most severe event (ICE score, level of consciousness, seizure, motor findings, raised intracranial pressure/cerebral edema) not attributable to any other cause. For example, a patient with an ICE score of 3 who has a generalized seizure is classified as having Grade 3 ICANS.

\(^2\) See Appendix F for Immune Effector Cell-associated Encephalopathy (ICE) Score

\(^3\) A patient with an ICE score of 0 may be classified as having Grade 3 ICANS if the patient is awake with global aphasia or Grade 4 ICANS if the patient is unarousable

\(^4\) Depressed level of consciousness should not be attributable to any other cause (e.g., sedating medication)

\(^5\) Tremors and myoclonus associated with immune effector cell therapies may be graded according to CTCAE v5.0 but they do not influence ICANS grading

\(^6\) Ophthalmology may be consulted to assess for papilledema if concern for elevated ICP, but otherwise not needed for all patients

\(^7\) Intracranial hemorrhage with or without associated edema is not considered a neurotoxicity feature and is excluded from ICANS grading. It may be graded according to CTCAE v5.0.
IEC Therapy Toxicity Assessment and Management (also known as CARTOX) – Adult

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.

APPENDIX F: Immune Effector Cell-associated Encephalopathy (ICE) Score

- **Orientation**: Orientation to year, month, city, hospital: 4 points (1 point each)
- **Naming**: Name 3 objects (e.g., clock, pen, button): 3 points (1 point each)
- **Following commands**: (e.g., Show me 2 fingers or close your eyes and stick out your tongue): 1 point
- **Writing**: Ability to write a standard sentence (e.g., Our national bird is the bald eagle): 1 point
- **Attention**: Count backwards from 100 by 10: 1 point

Score 10: No impairment
Score 7-9: Grade 1 ICANS
Score 3-6: Grade 2 ICANS
Score 0-2: Grade 3 ICANS
Score 0 due to patient unarousable and unable to perform ICE assessment: Grade 4 ICANS

1 A patient with an ICE score of 0 may be classified as having Grade 3 ICANS if the patient is awake with global aphasia or may be classified as having Grade 4 ICANS if the patient is unarousable
APPENDIX G: Management of CRS

<table>
<thead>
<tr>
<th>CRS Grade</th>
<th>CRS Parameter</th>
<th>Diagnostic Work-Up</th>
<th>Management</th>
<th>Anti-IEC Therapies</th>
</tr>
</thead>
</table>
| Grade 1 | Fever | • Assess for infection with blood and urine cultures, and chest radiography
 • Cardiac telemetry and pulse oximetry | • Acetaminophen and hypothermia blanket as needed for the treatment of fever
 • Ibuprofen if fever is not controlled with above; use with caution or avoid with thrombocytopenia or renal dysfunction
 • Empiric broad-spectrum antibiotics and consider filgrastim products if neutropenic
 • Maintenance IV fluids for hydration
 • Symptomatic management of constitutional symptoms and organ toxicities as per standard guidelines
 • If not on seizure prophylaxis, initiate levetiracetam 500 mg PO twice daily | • Consider tocilizumab\(^1\) for 1 dose for persistent fever lasting greater than 3 days |

\(^1\)See Appendix I for Dosing of IL-6 Antagonists and Alternative Agents
APPENDIX G: Management of CRS - continued

<table>
<thead>
<tr>
<th>CRS Grade</th>
<th>CRS Parameter</th>
<th>Diagnostic Work-up</th>
<th>Management</th>
<th>Anti-IEC Therapies</th>
</tr>
</thead>
</table>
| Grade 2 | Hypotension | • Cardiac telemetry
\hspace{1em}○ Assess for infection with blood and urine cultures, and chest radiography
\hspace{1em}• Fever work-up if not previously performed
\hspace{1.5em}○ Assess for infection with blood and urine cultures, and chest radiography | • IV fluid bolus of 500 – 1,000 mL normal saline; repeat once as needed to maintain normal BP
\hspace{1em}• If hypotension persists after IV fluids, tocilizumab, and dexamethasone, start vasopressors, transfer patient to ICU, obtain ECHO, and refer to further management as in Grade 3 or 4 CRS
\hspace{1em}• Symptomatic management of fever as in Grade 1 CRS
\hspace{1em}• Symptomatic management of constitutional symptoms and organ toxicities as per standard guidelines | • Administer tocilizumab\(^1\) for 1 dose and dexamethasone 4 - 10 mg IV for 1 dose (or methylprednisolone equivalent) and reassess in 6 hours or earlier if clinically indicated
\hspace{1em}○ Tocilizumab may be repeated every 8 hours for up to 3 doses in a 24-hour period |

\(^1\) See Appendix I for Dosing of IL-6 Antagonists and Alternative Agents
APPENDIX G: Management of CRS - continued

<table>
<thead>
<tr>
<th>CRS Grade</th>
<th>CRS Parameter</th>
<th>Diagnostic Work-up</th>
<th>Supportive Care</th>
<th>Management</th>
<th>Anti-IEC Therapies</th>
</tr>
</thead>
</table>
| Grade 3 | Hypotension | ● Obtain ECHO if not performed already
 ● Cardiac telemetry
 ● Fever work-up if not previously performed
 ○ Assess for infection with blood and urine cultures, and chest radiography | ● Transfer patient to ICU
 ● IV fluid boluses as needed as in Grade 2 CRS
 ● Use vasopressors as needed
 ● Symptomatic management of fever as in Grade 1 CRS
 ● Symptomatic management of constitutional symptoms and organ toxicities as per standard guidelines | ● Tocilizumab\(^1\) as in Grade 2 CRS if not administered previously; tocilizumab may be repeated every 8 hours for up to 3 doses in a 24-hour period
 ● If on one vasopressor: tocilizumab as in Grade 2 CRS and dexamethasone 10 mg IV every 6 hours (or methylprednisolone equivalent)
 ● If on two vasopressors: tocilizumab as in Grade 2 CRS and dexamethasone 20 mg IV every 6 hours (or methylprednisolone equivalent)
 ● If vasopressin and norepinephrine equivalent\(^2\) ≥ 15 mcg/minute, follow as in Grade 4 CRS
 ● Once CRS improves to Grade 1 or less, taper and/or stop corticosteroids depending on clinical situation |
| | Hypoxia | ● Pulse oximetry
 ● Fever work-up if not previously performed
 ○ Assess for infection with blood and urine cultures, and chest radiography | ● Supplemental oxygen including high-flow nasal cannula, face mask, non-rebreather mask, or Venturi mask as needed
 ● Symptomatic management of fever as in Grade 1 CRS
 ● Symptomatic management of constitutional symptoms and organ toxicities as per standard guidelines |
| | | | | ● Tocilizumab\(^1\) and dexamethasone 10 mg IV every 6 hours (or methylprednisolone equivalent) if not administered previously; tocilizumab may be repeated every 8 hours for up to 3 doses in a 24-hour period
 ● If there is no improvement in hypoxia within 24 hours or there is rapid progression of pulmonary infiltrates or sharp increase in FiO\(_2\) requirements, increase dexamethasone to 20 mg IV every 6 hours (or methylprednisolone equivalent)
 ● Once CRS improves to Grade 1 or less, taper and/or stop corticosteroids depending on clinical situation |

\(^1\)See Appendix I for Dosing of IL-6 Antagonists and Alternative Agents
\(^2\)VASST Trial vasopressor equivalent equation: norepinephrine equivalent dose = [norepinephrine (mcg/minute)] + [dopamine (mcg/kg/minute) / 2] + [epinephrine (mcg/minute)] + [phenylephrine (mcg/minute) / 10]

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.
APPENDIX G: Management of CRS - continued

<table>
<thead>
<tr>
<th>CRS Grade</th>
<th>CRS Parameter</th>
<th>Diagnostic Work-up</th>
<th>Supportive Care</th>
<th>Management</th>
<th>Anti-IEC Therapies</th>
</tr>
</thead>
</table>
| Grade 4 | Hypotension | • Obtain ECHO if not performed already
 • Cardiac telemetry
 • Fever work-up if not previously performed
 ○ Assess for infection with blood and urine cultures, and chest radiography | • Transfer patient to ICU
 • IV fluid boluses as needed as in Grade 2 CRS
 • Vasopressors as in Grade 3 CRS
 • Use vasopressors as needed
 • Symptomatic management of fever as in Grade 1 CRS
 • Symptomatic management of constitutional symptoms and organ toxicities as per standard guidelines | • Tocilizumab\(^1\) as in Grade 2 CRS if not administered previously; tocilizumab may be repeated every 8 hours for up to 3 doses in a 24-hour period
 • Methylprednisolone 1,000 mg/day in divided doses IV for 3 days followed by rapid taper as per clinical situation
 • If hypotension is refractory for > 24 hours or if patient is deteriorating rapidly, consider additional therapies (see Appendix I) including activation of safety switches if applicable | |
| | Hypoxia | • Monitor oxygen saturation while on mechanical ventilation
 • Fever work-up if not previously performed
 ○ Assess for infection with blood and urine cultures, and chest radiography | • Transfer patient to ICU
 • Positive pressure ventilation including CPAP, BiPAP, mechanical ventilation
 • Symptomatic management of fever as in Grade 1 CRS
 • Symptomatic management of constitutional symptoms and organ toxicities as per standard guidelines | • Tocilizumab\(^1\) as in Grade 2 CRS if not administered previously; tocilizumab may be repeated every 8 hours for up to 3 doses in a 24-hour period
 • Methylprednisolone 1,000 mg/day in divided doses IV for 3 days followed by rapid taper as per clinical situation
 • If hypoxia is refractory for > 24 hours or if patient is deteriorating rapidly, consider additional therapies (see Appendix I) including activation of safety switches if applicable | |

\(^1\) See Appendix I for Dosing of IL-6 Antagonists and Alternative Agents
APPENDIX H: Management of ICANS

<table>
<thead>
<tr>
<th>ICANS Grade</th>
<th>Sign or symptom</th>
<th>Diagnostic Work-up</th>
<th>Management</th>
<th>Anti-IEC Therapies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>Encephalopathy and/or depressed level of consciousness</td>
<td>• MRI imaging of the brain with and without contrast; CT of brain without contrast may be performed if MRI is not feasible; MRI spine if focal deficits are noted
• Neurology consultation
• ICE Score assessment every 6 hours or more frequently if clinically indicated
• EEG
• Consider diagnostic lumbar puncture if other causes of encephalopathy are suspected (e.g., infections, autoimmune, leptomeningeal disease)</td>
<td>• Vigilant supportive care; aspiration precautions; IV hydration
• Withhold oral intake of food/medications/liquids and assess swallowing; convert all oral medications and/or nutrition to IV if swallowing is impaired
• Avoid medications that cause central nervous system depression
• Low doses of lorazepam after EEG is performed (0.25-0.5 mg IV every 8 hours) or haloperidol (0.5 mg IV every 6 hours) may be used with careful monitoring for agitated patients
• If no seizures on EEG, continue prophylactic levetiracetam
• If EEG shows focal or generalized convulsive or non-convulsive seizure or convulsive status epilepticus, refer to further management as in Grade 3 or 4 ICANS</td>
<td>• Dexamethasone 10 mg IV for 1 dose (or methylprednisolone equivalent) and reassess in 6 hours or earlier if clinically indicated
○ If associated with concurrent CRS, add tocilizumab¹</td>
</tr>
<tr>
<td>Grade 2</td>
<td>Encephalopathy and/or depressed level of consciousness</td>
<td>• Neurological work-up as in Grade 1 ICANS</td>
<td>• Supportive care as in Grade 1 ICANS</td>
<td>• Dexamethasone 10 mg IV every 12 hours (or methylprednisolone equivalent)
○ If associated with concurrent CRS, add tocilizumab¹
• Once ICANS improves to Grade 1 or less, taper and/or stop corticosteroids depending on clinical situation</td>
</tr>
</tbody>
</table>

¹See Appendix I for Dosing of IL-6 Antagonists and Alternative Agents

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.
APPENDIX H: Management of ICANS - continued

<table>
<thead>
<tr>
<th>ICANS Grade</th>
<th>Sign or symptom</th>
<th>Diagnostic Work-up</th>
<th>Supportive Care</th>
<th>Anti-IEC Therapies</th>
</tr>
</thead>
</table>
| **Grade 3** | Seizure | Neurological work-up as in Grade 1 ICANS
EEG if clinically indicated (e.g., ongoing seizures, depressed level of consciousness)
Rule out other potential causes of seizure (i.e., beta-lactams, etc.) | Supportive care as in Grade 1 ICANS
Transfer to ICU | Dexamethasone 20 mg IV every 6 hours (or methylprednisolone equivalent)
If associated with concurrent CRS, add tocilizumab²
If Grade 3 encephalopathy is persistent for > 24 hours, increase dexamethasone to 20 mg IV every 6 hours (or methylprednisolone equivalent)
Once ICANS improves to Grade 1 or less, taper and/or stop corticosteroids depending on clinical situation |
| | Focal cerebral edema | Neurological work-up as in Grade 1 ICANS
Consider repeat neuro-imaging (CT or MRI) every 24 hours until edema resolves or more frequently if clinically indicated | Transfer to ICU
Supportive care as in Grade 1 ICANS | If focal edema is in brain stem or thalamus, methylprednisolone 1,000 mg/day in divided doses IV for 3 days followed by taper depending on clinical situation
If associated with concurrent CRS, add tocilizumab²
If focal edema is in other areas of brain, methylprednisolone 1,000 mg/day in divided doses IV for 1 day; assess daily and continue or taper depending on clinical situation
If associated with concurrent CRS, add tocilizumab² |

¹Abnormal findings on imaging where correction of hypertension, uremia, and/or coagulopathy should be performed include changes suggestive of typical or atypical posterior reversible encephalopathy syndrome (PRES), temporal lobe and limbic system encephalitis (autoimmune or infection), acute disseminated encephalomyelitis, emboli, vasculitis, strokes, and/or seizure-related changes

²See Appendix I for Dosing of IL-6 Antagonists and Alternative Agents

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.
IEC Therapy Toxicity Assessment and Management (also known as CARTOX) – Adult

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.

APPENDIX H: Management of ICANS - continued

<table>
<thead>
<tr>
<th>ICANS Grade</th>
<th>Sign or symptom</th>
<th>Diagnostic Work-Up</th>
<th>Supportive Care</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encephalopathy and/or depressed level of consciousness</td>
<td>Neurological work-up as in Grade 1 ICANS</td>
<td>Transfer to ICU</td>
<td>Supportive care as in Grade 1 ICANS</td>
<td>Methylprednisolone 1,000 mg/day in divided doses IV for 3 days followed by taper as clinically indicated; if associated with concurrent CRS, add tocilizumab</td>
</tr>
<tr>
<td>4</td>
<td>Neuropathology and/or depressed level of consciousness</td>
<td>Repeat neuro-imaging and lumbar puncture as in Grade 3 ICANS</td>
<td>Consider mechanical ventilation for airway protection</td>
<td>Continue corticosteroids until improvement to less than or equal to Grade 1 ICANS and then taper and stop corticosteroids depending on clinical situation</td>
</tr>
<tr>
<td>4</td>
<td>If there are new abnormal findings on brain imaging* not related to primary malignancy, control hypertension with the goal of maintaining MAP within 20-25 mmHg of baseline MAP; correct any uremia (dialysis if needed) and/or coagulopathy (transfuse to keep platelets > 20 - 50 x 10^9/L and fibrinogen > 200 mg/dL and INR < 1.5)</td>
<td></td>
<td></td>
<td>If Grade 4 ICANS is refractory for > 24 hours or if patient is deteriorating rapidly, consider additional therapies (see Appendix I) including activation of safety switches if applicable</td>
</tr>
<tr>
<td>Seizure</td>
<td>Neurological work-up as in Grade 1 ICANS</td>
<td>Transfer to ICU</td>
<td>Supportive care as in Grade 1 ICANS</td>
<td>Methylprednisolone 1,000 mg/day in divided doses IV for 3 days followed by taper as clinically indicated; if associated with concurrent CRS, add tocilizumab</td>
</tr>
<tr>
<td>4</td>
<td>Rule out other potential causes of seizure (i.e., beta-lactams, etc.)</td>
<td></td>
<td>For focal or generalized convulsive or non-convulsive seizure or convulsive status epilepticus, treat as in Appendix I</td>
<td>If Grade 4 ICANS is refractory for > 24 hours or if patient is deteriorating rapidly, consider additional therapies (see Appendix I) including activation of safety switches if applicable</td>
</tr>
<tr>
<td>Motor Weakness</td>
<td>Neurological work-up as in Grade 1 ICANS</td>
<td>Transfer to ICU</td>
<td>Supportive care as in Grade 1 ICANS</td>
<td>Methylprednisolone 1,000 mg/day in divided doses IV for 3 days followed by taper as clinically indicated; if associated with concurrent CRS, add tocilizumab</td>
</tr>
<tr>
<td>4</td>
<td>MRI with and without contrast of the spine</td>
<td></td>
<td>For convulsive status epilepticus, treat as in Appendix I</td>
<td>If Grade 4 ICANS is refractory for > 24 hours or if patient is deteriorating rapidly, consider additional therapies (see Appendix I) including activation of safety switches if applicable</td>
</tr>
<tr>
<td>Diffuse cerebral edema or raised intracranial pressure</td>
<td>Neurological work-up as in Grade 1 ICANS</td>
<td>Transfer to ICU</td>
<td>Supportive care as in Grade 1 ICANS</td>
<td>Methylprednisolone 1,000 mg/day in divided doses IV for 3 days followed by taper as clinically indicated; if associated with concurrent CRS, add tocilizumab</td>
</tr>
<tr>
<td>4</td>
<td>Consider repeat neuro-imaging as in focal cerebral edema from Grade 3 ICANS</td>
<td></td>
<td>For diffuse cerebral edema or signs of raised intracranial pressure, treat as in Appendix I</td>
<td>If Grade 4 ICANS is refractory for > 24 hours or if patient is deteriorating rapidly, consider additional therapies (see Appendix I) including activation of safety switches if applicable</td>
</tr>
</tbody>
</table>

*Abnormal findings on imaging where correction of hypertension, uremia, and/or coagulopathy should be performed include changes suggestive of typical or atypical posterior reversible encephalopathy syndrome (PRES), hemiparesis, and/or focal seizures. Temporal lobe and limbic system encephalitis (autoimmune or infection), acute disseminated encephalomyelitis, emboli, vasculitis, strokes, and/or seizure-related changes .

2 See Appendix I for Dosing of IL-6 Antagonists and Alternative Agents

Copyright 2019 The University of Texas MD Anderson Cancer Center
APPENDIX I: Recommendations for Use of IL-6 Antagonists and Alternative Agents for Management of CRS and ICANS

<table>
<thead>
<tr>
<th>Drug</th>
<th>Recommended Dose for CRS and/or ICANS</th>
<th>Maximum Dose</th>
<th>Mechanism of Action</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Tocilizumab | 8 mg/kg IV | Maximum 800 mg per dose | IL-6 receptor antagonist | • Maximum of 4 doses total over the entire course of CRS and ICANS
• Dose may be repeated every 8 hours for up to three doses in a 24-hour period |
| Siltuximab | 11 mg/kg IV once | - | IL-6 antibody | • Recommended primarily for patients who are intolerant to tocilizumab
• No more than 1 dose in a 3 week period |
| Anakinra | 100 mg subcutaneously daily for 7 days | - | IL-1 receptor antagonist | • Renal dose adjustment may be needed for creatinine clearance < 30 mL/minute |
| Cyclophosphamide | 1,500 mg/m² IV for one dose | - | Alkylating agent | • Give with mesna 1500 mg/m² IV over 24 hours for one dose |
| Anti-thymocyte globulin (rabbit) | 1-2 mg/kg IV daily for 3 days | - | Immunosuppressant | • Hypersensitivity reactions can occur; premedicate with diphenhydramine and scheduled dose of corticosteroid
• Infuse over a minimum of 6 hours |

Safety switches

- If the IEC product contains a safety switch (e.g., iCaspase-9 or EGFRt-positive), the corresponding drug to eliminate those cells can be considered in doses according to manufacturer. Examples include rimiducid to eliminate iCaspase-9 or cetuximab to eliminate EGFRt-positive cells.

1 MD Anderson formulary restricted for use in CRS/ICANS and for use in hemophagocytic lymphohistiocytosis (HLH), see Appendix M
2 MD Anderson formulary restricted for use in CRS/ICANS
3 Not on MD Anderson formulary; use at MD Anderson is based on internal data in patients with tocilizumab and/or siltuximab failure

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.
IEC Therapy Toxicity Assessment and Management (also known as CARTOX) – Adult

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.

APPENDIX J: Management of Focal or Generalized Convulsive or Non-Convulsive Seizures

- Assess CAB / consider airway protection / check blood glucose
- Consult Neurology
- For focal and generalized convulsive seizures, lorazepam 1-2 mg IV and repeat as needed (to a maximum cumulative dose of 4 mg)
- For electrographical seizures, including non-convulsive status epilepticus, lorazepam 0.5 mg IV and repeat every 5 minutes as needed (to a maximum cumulative dose of 2 mg)
- Levetiracetam 500-1,500 mg IV bolus (in addition to maintenance dose)
- Replete with magnesium as needed to maintain magnesium level > 2 mg/dL
- Thiamine 100 mg IV every 8 hours for 5 days
- If non-convulsive seizures persist, transfer to ICU and add phenobarbital loading dose of 60 mg IV (monitor for respiratory depression, bradycardia and hypotension)
- Maintenance doses after resolution of non-convulsive status epilepticus
 - Lorazepam 0.5 mg IV every 8 hours for 3 doses
 - Levetiracetam 1,000-1,500 mg IV every 12 hours
 - Phenobarbital 30 mg IV every 12 hours (~0.5 mg/kg every 12 hours)
 - Monitor for respiratory depression, bradycardia and hypotension
 - Assess for drug-drug interactions (i.e., may induce metabolism of azole antifungals or other CYP3A4 substrates) and consider alternative therapy if drug interactions are significant
 - Target serum trough levels 15-40 mcg/mL.

APPENDIX K: Management of Convulsive Status Epilepticus

- Assess CAB / consider airway protection / check blood glucose
- Transfer to ICU
- Consult Neurology
- Lorazepam 0.1 mg/kg (maximum 4 mg/dose) given at a maximum rate of 2 mg/minute; may repeat in 5 to 10 minutes
- Levetiracetam 500-1,500 mg IV bolus (in addition to maintenance dose)
- Replete with magnesium as needed to maintain magnesium > 2 mg/dL
- Thiamine 100 mg IV every 8 hours for 5 days
- If seizures persist, add phenobarbital loading dose of 15 mg/kg IV (monitor for respiratory depression, bradycardia and hypotension)
- If refractory, consider additional therapies (see Appendix I) including activation of safety switches if applicable
- Maintenance doses after resolution of convulsive status epilepticus
 - Levetiracetam 1,000-1,500 mg IV every 12 hours
 - Phenobarbital 0.5 mg/kg IV every 12 hours
 - Monitor for respiratory depression, bradycardia and hypotension
 - Assess for drug-drug interactions (i.e., may induce metabolism of azole antifungals or other CYP3A4 substrates) and consider alternative therapy if drug interactions are significant
 - Target serum trough levels 15-40 mcg/mL.
- Continuous EEG monitoring if seizures are refractory to treatment

CAB = circulation, airway, breathing

Department of Clinical Effectiveness V3
Approved by the Executive Committee of the Medical Staff on 11/19/2019
APPENDIX L: Management of Diffuse Cerebral Edema and/or Raised Intracranial Pressure

| For papilledema without diffuse cerebral edema or other signs of raised intracranial pressure | • Acetazolamide 1,000 mg IV followed by 250-1,000 mg IV every 12 hours (monitor renal function and acid/base balance once or twice daily and adjust dose accordingly)
• Dexamethasone 20 mg every 6 hours (or methylprednisolone equivalent) and start taper after resolution of papilledema |
| For diffuse cerebral edema on neuroimaging or signs of raised intracranial pressure such as decerebrate or decorticate posturing, cranial nerve VI palsy, or Cushing’s triad | • Methylprednisolone 1,000 mg/day in divided doses IV for 3 days followed by taper as clinically indicated
• Elevate head end of patient’s bed to an angle of 30 degrees
• Hyperventilation to achieve target PaCO₂ of 28-30 mmHg, but maintained for no longer than 24 hours
• Hyperosmolar therapy with either mannitol (20 g/dL solution) or hypertonic saline (3% or 23.4% as detailed below)
 ○ Mannitol: initial dose 0.5-1 g/kg IV; maintenance dose 0.25-1 g/kg IV every 6 hours while monitoring metabolic profile and serum osmolality every 6 hours; and withhold mannitol if serum osmolality is ≥ 320 mOsm/kg or osmolality gap is ≥ 40
 ○ Hypertonic 3% saline: initial dose 250 mL IV over 15 minutes, maintenance dose of 50-75 mL/hour IV while monitoring electrolytes every 4 hours; withhold infusion if serum sodium levels reach ≥ 155 mEq/L
 ○ Hypertonic 23.4% saline (for patients with imminent herniation): dose to be administered by physician; initial dose of 30 mL IV; repeat after 15 minutes, if needed
• If patient has ommaya reservoir, drain CSF to target OP < 20 mmHg
• Control hypertension with the goal of maintaining mean arterial pressure (MAP) within 20-25 mmHg of baseline MAP; correct any uremia (dialysis if needed) and/or coagulopathy (transfuse to keep platelets > 20-50 K/microliter, fibrinogen > 200 mg/dL and INR < 1.5)
• Consider neurosurgery consultation and IV anesthetics for burst-suppression pattern on EEG; transfuse to keep platelets ≥ 100 K/microliter if possible and correct coagulopathy in case of surgical intervention
• Consider additional therapies (see Appendix I) including activation of safety switches if applicable
• Metabolic profile every 6 hours and daily CT scans of head without contrast, with adjustments in usage of aforementioned medications to prevent rebound cerebral edema, renal failure, electrolyte abnormalities, hypovolemia and hypotension |
APPENDIX M: Diagnostic Criteria for IEC-associated Fulminant Hemophagocytic Lymphohistiocytosis (HLH) or Macrophage Activation Syndrome (MAS)

- Consider HLH/MAS if a patient has a peak ferritin > 10,000 ng/mL during the CRS phase and develops any two of the following organ toxicities after IEC therapy:
 - ≥ Grade 3 increase in bilirubin, aspartate transaminase, or alanine transaminase
 - ≥ Grade 3 oliguria or increase in creatinine
 - ≥ Grade 3 pulmonary edema
- Presence of hemophagocytosis by morphology and/or CD68 immunohistochemistry in bone marrow or organs
- If HLH/MAS is suspected, obtain baseline fasting triglyceride level and serum soluble IL-2 receptor

1Grading as per Common Terminology Criteria for Adverse Events, version 5.0

Management of IEC-associated Fulminant HLH / MAS

Suspected HLH → Manage greater than or equal to Grade 3 organ toxicity with tocilizumab and corticosteroids, see Appendix G for management of CRS → Monitor ferritin, LDH, fibrinogen, transaminases, bilirubin, creatinine → Improvement after 48 hours?

Yes → Continue management of CRS, see Appendix G

No → Consider adding etoposide (75-100 mg/m² IV every 4-7 days) → Consider cytarabine (100 mg) intrathecally with or without hydrocortisone (50-100 mg) intrathecally for ICANS

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.
APPENDIX N: Determine if the Subject Has Allogeneic IEC-associated Acute Graft-Versus-Host Disease (GVHD)

If a subject has any of the following symptoms or signs within the first 3 months after allogeneic IEC therapy, the subject may have acute GVHD if the symptoms or signs are not attributable to any other cause.

1. Skin rash
2. Diarrhea (may also be associated with nausea, vomiting, and/or anorexia due to upper GI GVHD)
3. Total bilirubin ≥ 2 mg/dL

APPENDIX O: Determine the Grade of IEC-associated Acute GVHD

<table>
<thead>
<tr>
<th>Stage</th>
<th>Skin</th>
<th>Liver (bilirubin)</th>
<th>Lower GI (stool output/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No active (erythematous) GVHD rash</td>
<td>< 2 mg/dL</td>
<td>< 500 mL/day or < 3 episodes/day</td>
</tr>
<tr>
<td>1</td>
<td>Maculopapular rash < 25% BSA</td>
<td>2 - 3 mg/dL</td>
<td>500-999 mL/day or 3-4 episodes/day</td>
</tr>
<tr>
<td>2</td>
<td>Maculopapular rash 25 – 50% BSA</td>
<td>3.1 - 6 mg/dL</td>
<td>1000 -1500 mL/day or 5-7 episodes/day</td>
</tr>
<tr>
<td>3</td>
<td>Maculopapular rash > 50% BSA</td>
<td>6.1 - 15 mg/dL</td>
<td>> 1500 mL/day or > 7 episodes/day</td>
</tr>
<tr>
<td>4</td>
<td>Generalized erythroderma (> 50% BSA) plus bullous formation and desquamation > 5% BSA</td>
<td>> 15 mg/dL</td>
<td>Severe abdominal pain with or without ileus or grossly bloody stool (regardless of stool volume)</td>
</tr>
</tbody>
</table>

Overall Clinical Grade (based on most severe organ involvement)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No stage 1-4 of any organ</td>
</tr>
<tr>
<td>I</td>
<td>Stage 1-2 skin without liver, upper GI, or lower GI involvement</td>
</tr>
<tr>
<td>II</td>
<td>Stage 3 rash and/or stage 1 liver and/or stage 1 upper GI and/or stage 1 lower GI</td>
</tr>
<tr>
<td>III</td>
<td>Stage 2-3 liver and/or stage 2-3 lower GI, with stage 0-3 skin and/or stage 0-1 upper GI</td>
</tr>
<tr>
<td>IV</td>
<td>Stage 4 skin, liver, or lower GI involvement, with stage 0-1 upper GI</td>
</tr>
</tbody>
</table>

BSA = body surface area

1 Isolated upper GI GVHD with nausea, vomiting, and/or anorexia is uncommon following allogeneic lymphocyte infusion

2 Isolated upper GI GVHD with nausea, vomiting, and/or anorexia is uncommon following allogeneic lymphocyte infusion
APPENDIX P: Manage IEC-associated Acute GVHD

<table>
<thead>
<tr>
<th>Grade</th>
<th>Sign or Symptom</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Skin rash</td>
<td>- Skin biopsy, preferably non-sun exposed site</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hydrocortisone cream 1% twice daily to face</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Triamcinolone cream 0.1% three times daily to affected body area</td>
</tr>
<tr>
<td>Grade I</td>
<td></td>
<td>- If patient fails triamcinolone, may consider clobetasol cream 0.05% twice daily to body; limit use to no longer than 1-2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- All corticosteroid creams should be followed by an emollient such as CeraVe, Aquaphor or Eucerin (creams not lotions) 20-40 minutes after application of corticosteroid</td>
</tr>
<tr>
<td></td>
<td>Skin rash > 50% BSA and/or</td>
<td>- At onset of symptoms that are grade II or higher, consult Stem Cell Transplant team for GVHD workup and management</td>
</tr>
<tr>
<td>Grade II-IV</td>
<td>Total bilirubin > 2 mg/dL and/or</td>
<td>- Skin biopsy as above for rash</td>
</tr>
<tr>
<td></td>
<td>Diarrhea > 500 mL/day</td>
<td>- Gastrointestinal consult for flexible sigmoidoscopy with or without upper GI endoscopy with duodenal biopsy(^1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DO NOT give GI prep (GoLytely, etc.) unless full colonoscopy ordered</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Stool culture for C. difficile and GI multiplex panel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DO NOT wait for completion of these procedures to start systemic therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Start prednisone 2 mg/kg/day orally or methylprednisolone equivalent in divided doses</td>
</tr>
</tbody>
</table>

BSA = body surface area

\(^1\) Upper GI endoscopy may be considered if patient has nausea, vomiting, and/or anorexia and upper GI GVHD is suspected
IEC Therapy Toxicity Assessment and Management (also known as CARTOX) – Adult

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.

SUGGESTED READINGS

This practice consensus algorithm is based on majority expert opinion of the CAR Cell Therapy Toxicity Assessment and Management work group at the University of Texas MD Anderson Cancer Center. It was developed using a multidisciplinary approach that included input from the following providers:

- Sherry Adkins, MSN, ANP-C (Lymphoma/Myeloma)
- Ella Ariza Heredia, MD (Infectious Diseases)
- Anne Rain Brown, PharmD (Pharmacy Clinical Programs)
- Aman Buzdar, MD (Clinical Research Administration)
- Wendy Covert, PharmD (Pharmacy Clinical Programs)
- Naval Daver, MD (Leukemia)
- John de Groot, MD (Neurology Oncology)
- Alison Gulbis, PharmD (Pharmacy Clinical Programs)
- Cristina Gutierrez, MD (Critical Care & Respiratory Care)
- Sandra Horowitz, PharmD (Pharmacy Clinical Programs)
- Patrick Hwu, MD (Cancer Medical Administration)
- Partow Kebriaei, MD (Stem Cell Transplantation)
- Monica Elena Loghin, MD (Neurology Oncology)
- Victor Mulanovich, MD (Infectious Diseases)
- Sattva Neelapu, MD (Lymphoma/Myeloma)
- Christina Perez
- Corey Russel, MS, RN (Clinical Nursing)
- Elizabeth Shpall, MD (Stem Cell Transplantation)
- Sudhakar Tummala, MD (Neurology Oncology)
- William Wierta, MD, PhD (Leukemia)
- Milena Zhang, PharmD

Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient’s care. This algorithm should not be used to treat pregnant women.