These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

Biomarkers - MD Anderson Approved

Table of Contents

Solid Tumors:
- Brain/Neuro-oncology Page 2
- Breast Page 2
- Endocrine Page 3
- Gastrointestinal Page 4
- Genitourinary Page 5
- Gynecology Page 6
- Head and Neck Page 6
- Melanoma Page 7
- Sarcoma Page 7
- Thoracic Page 8
- Unknown Primary Page 8

Liquids:
- Leukemia Page 9-12
- Lymphoma Page 13
- Myeloma Page 13

Suggested Readings Page 14-57
- Brain/Neuro-oncology Page 14-17
- Breast Page 18-21
- Endocrine Page 21-23
- Gastrointestinal Page 24-27
- Genitourinary/Urology Page 28-29
- Gynecology Page 30-39
- Head & Neck Page 40
- Leukemia Page 41-52
- Lymphoma Page 52
- Melanoma Page 53
- Myeloma Page 53
- Sarcoma Page 54
- Thoracic Page 54-57

Development Credits Page 58

The Molecular Testing Evaluation Committee (MTEC) is responsible for the review and approval of requests for biomarker testing based on evaluating published data and determining if there is sufficient scientific and clinical interest for their use in standard care of patients at MD Anderson. The committee reports up to Medical Practice and the Executive Committee for the Medical Staff. Biomarkers approved by MTEC and available through Pathology and Laboratory Medicine using CLIA-compliant molecular diagnostic tests that satisfy the institutionally defined criteria are included in this document.

The following exception criteria must be met for orders which are not included in this document; additionally, the request must be approved by the internal MDACC Single Use Order Set Committee.

Exception criteria:
- The test is clinically justifiable: Molecular test results will guide treatment decisions, and the results will identify treatment selection among currently available therapies.
- The patient is appropriate for such therapies: The patient has a performance status of ECOG of 0 or 1 and is expected to live for at least three months.
- The patient has locally advanced or metastatic disease not appropriate for other therapies.
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>CELL TYPE</th>
<th>FISH</th>
<th>IMMUNOHISTOCHEMISTRY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain/Neuro-Oncology</td>
<td>Glioma</td>
<td>1p/19q co-deletion</td>
<td>EGFR, PTEN, BRAF V600E</td>
<td>MGMT promoter methylation, IDH1 mutation, IDH2 mutation, PIK3CA mutation, BRAF mutation, PTEN mutation, EGFR mutation, CTNNB1, PDGFR, MET, FGFR, TP53, CDKN2A, NF1</td>
</tr>
<tr>
<td>Primitive Neuroectodermal Tumors/ Medulloblastoma</td>
<td>MYC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>All invasive Cancer types</td>
<td>HER2/neu²</td>
<td>ER²,2, PR², Ki-67 (MIB-1) labeling index², HER2/neu²</td>
<td>ESR1, FGFR1, MammaPrint, Oncotype DX, PIK3CA, TP53</td>
</tr>
</tbody>
</table>

1 For DCIS specimens, ER and PR should be performed on the final surgical specimen and not the core biopsy since there may be invasive cancer in the surgical specimen in which case all biomarkers should be done on the invasive cancer (ER, PR, HER2/neu, Ki-67). If no invasive cancer seen, then ER and PR should be preformed on the DCIS specimen.

2 For metastatic breast cancer cases, ER, PR, HER2/neu and Ki-67 should be obtained if ordered by the requesting physician as clinically indicated.

3 HER2/neu by FISH will only be performed if a 2+ or greater result is obtained by HER2/neu IHC, or in select 1+ IHC results as judged by the pathologist on the case, or if requested by the ordering or treating physicians as clinically indicated.
<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>CELL TYPE</th>
<th>FISH</th>
<th>IMMUNOHISTOCHEMISTRY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocrine</td>
<td>Papillary Thyroid Carcinoma (all variants)</td>
<td>BRAF V600E</td>
<td></td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td>Follicular Thyroid Carcinoma / Hurthle Cell (oxyphilic) Thyroid Carcinoma</td>
<td>PTEN</td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td>Medullary Thyroid Carcinoma</td>
<td></td>
<td></td>
<td>• HRAS mutation</td>
</tr>
<tr>
<td></td>
<td>Anaplastic Thyroid Carcinoma</td>
<td>• PTEN</td>
<td></td>
<td>• NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BRAF V600E</td>
<td></td>
<td>• PIK3CA mutation</td>
</tr>
<tr>
<td>Adrenocortical</td>
<td>Ki-67 (MIB-1) labeling index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathyroid</td>
<td>Ki-67 (MIB-1) labeling index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pituitary</td>
<td>Ki-67 (MIB-1) labeling index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>CELL TYPE</th>
<th>FISH</th>
<th>IMMUNOHISTOCHEMISTRY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastro-intestinal</td>
<td>Stomach & Esophagogastric Junction Adenocarcinoma</td>
<td>• HER2/neu</td>
<td>• HER2/neu</td>
<td>• Microsatellite Instability (MSI) by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MET</td>
<td>• MET</td>
<td>• MLH1 promoter hypermethylation analysis and BRAF mutation analysis will also be performed if immunohistochemistry shows loss of MLH1 and if sufficient tumor DNA is available for analysis.</td>
</tr>
<tr>
<td></td>
<td>Colorectal Adenocarcinoma</td>
<td>• HER2/neu</td>
<td>• Immunohistochemistry for DNA mismatch repair enzymes (MLH1, MSH2, MSH6, PMS2) Note: MLH1 promoter hypermethylation analysis and BRAF mutation analysis will also be performed if immunohistochemistry shows loss of MLH1 and if sufficient tumor DNA is available for analysis.</td>
<td>• MLH1 promoter hypermethylation analysis and BRAF mutation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
</tr>
<tr>
<td></td>
<td>Small Intestinal Adenocarcinoma</td>
<td></td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td>Appendiceal Adenocarcinoma</td>
<td></td>
<td></td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td>PMP (Pseudomyxoma Peritonei)</td>
<td></td>
<td></td>
<td>• NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PHK3CA mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Microsatellite Instability (MSI) by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MLH1 promoter hypermethylation analysis and BRAF mutation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PHK3CA mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Microsatellite Instability (MSI) by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MLH1 promoter hypermethylation analysis and BRAF mutation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PHK3CA mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Microsatellite Instability (MSI) by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MLH1 promoter hypermethylation analysis and BRAF mutation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PHK3CA mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Microsatellite Instability (MSI) by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MLH1 promoter hypermethylation analysis and BRAF mutation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PHK3CA mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Microsatellite Instability (MSI) by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MLH1 promoter hypermethylation analysis and BRAF mutation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PHK3CA mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Microsatellite Instability (MSI) by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MLH1 promoter hypermethylation analysis and BRAF mutation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PHK3CA mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Microsatellite Instability (MSI) by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MLH1 promoter hypermethylation analysis and BRAF mutation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PHK3CA mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Microsatellite Instability (MSI) by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MLH1 promoter hypermethylation analysis and BRAF mutation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PHK3CA mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Microsatellite Instability (MSI) by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MLH1 promoter hypermethylation analysis and BRAF mutation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PHK3CA mutation</td>
</tr>
<tr>
<td>DISEASE SITE</td>
<td>CELL TYPE</td>
<td>FISH</td>
<td>IMMUNOHISTOCHEMISTRY</td>
<td>MOLECULAR</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>Urothelial Carcinoma</td>
<td>HER2/neu</td>
<td>● Immunohistochemistry for DNA mismatch repair enzymes (MLH1, MSH2, MSH6, PMS2)</td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: MLH1 promoter hypermethylation analysis will also be performed if immunohistochemistry shows loss of MLH1 and if sufficient tumor DNA is available for analysis.</td>
<td>• CDKN2A mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• CK20</td>
<td>• FGFR1 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• CK5/6</td>
<td>• FGFR3 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• GATA3</td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MTAP</td>
<td>• MTOR mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MLH1 promoter hypermethylation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Microsatellite Instability (MSI) (MLH1, MSH2, MSH6, PMS2)</td>
</tr>
<tr>
<td>Prostate</td>
<td></td>
<td>PSA, PAP</td>
<td>● AR</td>
<td>• PTEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● PTEN</td>
<td>• RB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● p53</td>
<td>• TP53</td>
</tr>
<tr>
<td>Testicular, Suspected Testicular</td>
<td></td>
<td>β HCG, AFP</td>
<td>● Microsatellite Instability (MSI)</td>
<td>• PTEN</td>
</tr>
<tr>
<td>Lynch Syndrome</td>
<td></td>
<td>● Microsatellite Instability (MSI) (MLH1, MSH2, MSH6, PMS2)</td>
<td>● MLH1 methylation performed based on MSI</td>
<td>• RB1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● BRAF</td>
<td>• TP53</td>
</tr>
</tbody>
</table>
BIOMARKER

<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>CELL TYPE</th>
<th>FISH</th>
<th>IMMUNOHISTOCHEMISTRY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gynecology</td>
<td>Ovarian and Uterine Carcinoma</td>
<td>HER2/neu</td>
<td>● HER2/neu</td>
<td>● Microsatellite Instability (MSI) by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● ER/PR</td>
<td>● MLH1 promoter hypermethylation if applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>● KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● PTEN</td>
<td>● BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● HPV</td>
<td>● TP53 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● PIK3CA mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● AKT1 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● PTEN mutation</td>
</tr>
<tr>
<td>Lynch Syndrome</td>
<td></td>
<td>Microsatellite Instability (MSI) (MLH1, MSH2, MSH6, PMS2) MLH1 methylation performed based on MSI</td>
<td>Microsatellite Instability (MSI) by PCR</td>
<td></td>
</tr>
<tr>
<td>Head and Neck</td>
<td>Oropharynx Carcinoma</td>
<td>HER2/neu</td>
<td>● HPV for high risk (in situ hybridization)</td>
<td>● MLH1 methylation performed based on MSI and immunohistochemistry results</td>
</tr>
<tr>
<td></td>
<td>Nasopharynx Carcinoma</td>
<td></td>
<td>● p16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral Cavity Carcinoma</td>
<td>Epstein-Barr Virus (in situ hybridization)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salivary Carcinoma</td>
<td>HER2/neu</td>
<td>● KIT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● EGFR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Androgen Receptor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown Primary Carcinoma metastatic to cervical lymph node</td>
<td></td>
<td>● Epstein-Barr Virus (in situ hybridization)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● HPV high risk (in situ hybridization)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● p16</td>
<td></td>
</tr>
<tr>
<td>CELL TYPE</td>
<td>FISH</td>
<td>IMMUNOHISTOCHEMISTRY</td>
<td>MOLECULAR</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>--------------------------------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td></td>
<td>• BRAF V600E</td>
<td>• KIT mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• iNOS</td>
<td>• NRAS mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PD-L1 28-8</td>
<td>• BRAF mutation</td>
<td></td>
</tr>
<tr>
<td>Cutaneous</td>
<td></td>
<td>• BRAF V600E</td>
<td>• KIT mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PD-L1 28-8</td>
<td>• NRAS mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• BRAF mutation</td>
<td></td>
</tr>
<tr>
<td>Acral</td>
<td>• BRAF V600E</td>
<td>• KIT mutation</td>
<td>• NRAS mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PD-L1 28-8</td>
<td></td>
<td>• BRAF mutation</td>
<td></td>
</tr>
<tr>
<td>Mucosal</td>
<td>• BRAF V600E</td>
<td>• KIT mutation</td>
<td>• NRAS mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PD-L1 28-8</td>
<td></td>
<td>• BRAF mutation</td>
<td></td>
</tr>
<tr>
<td>Uveal</td>
<td>• PD-L1 28-8</td>
<td>• 15-gene signature</td>
<td>• GNAQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monosomy 3</td>
<td>• GNA11</td>
<td></td>
</tr>
<tr>
<td>Unknown Primary</td>
<td>• BRAF V600E</td>
<td>• KIT mutation</td>
<td>• NRAS mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PD-L1 28-8</td>
<td></td>
<td>• BRAF mutation</td>
<td></td>
</tr>
<tr>
<td>Sarcoma</td>
<td>Neuroblastoma</td>
<td>MYCN (N-MYC)</td>
<td>• GNAQ mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desmoid Fibromatosis</td>
<td>CTNNBI (β-Catenin) mutation</td>
<td>• GNA11 mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soft Tissue and Bone</td>
<td>PD-L1</td>
<td>• KIT mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal Stromal Tumor</td>
<td>PD-L1</td>
<td>• PDGFRA mutation</td>
<td></td>
</tr>
</tbody>
</table>
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>CELL TYPE</th>
<th>FISH</th>
<th>IMMUNOHISTOCHEMISTRY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thoracic</td>
<td>Non Small Cell Lung Carcinoma</td>
<td>ALK rearrangement</td>
<td>BRAF V600E</td>
<td>EGFR mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROS1 rearrangement</td>
<td>MET</td>
<td>KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MET</td>
<td>PD-L1 22C3</td>
<td>BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RET</td>
<td></td>
<td>EGFR Targeted Therapy Resistance Mutation (T790M, C7975 only)</td>
</tr>
<tr>
<td>Unknown Primary</td>
<td>Breast, Gastric Profile</td>
<td>HER2/neu</td>
<td>HER2/neu</td>
<td>EGFR mutation</td>
</tr>
<tr>
<td></td>
<td>Lung Profile</td>
<td>ALK rearrangement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small Bowel, Colon Profile</td>
<td></td>
<td></td>
<td>KRAS mutation</td>
</tr>
</tbody>
</table>

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>DIAGNOSIS</th>
<th>CYTOGENETICS</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia</td>
<td>ALL - New Patient Work-up for all patients</td>
<td>● Conventional chromosome analysis</td>
<td>● ABL1 gene mutation (kinase domain) qualitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● FISH - t(9;22) BCR/ABL1</td>
<td>● ABL1 gene mutation p.T315I quantitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● FISH - MYC (8q24)</td>
<td>● TP53 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● JAK2 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● NOTCH1 Exons 26, 27, 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● FBXW7</td>
</tr>
<tr>
<td></td>
<td>ALL - Peripheral Blood (Similar to Marrow)</td>
<td>FISH - MYC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALL - T Lineage</td>
<td>Conventional chromosome analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALL – Philadelphia Negative</td>
<td>Conventional chromosome analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALL – Philadelphia Positive</td>
<td>Conventional chromosome analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● TCRB clonality</td>
<td>● ABL1 gene mutation (kinase domain) qualitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● TCRG clonality</td>
<td>● ABL1 gene mutation p.T315I quantitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● TP53 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● JAK2 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● NRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● NOTCH1 Exons 26, 27, 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● FBXW7</td>
</tr>
<tr>
<td></td>
<td>ALL - Relapsed</td>
<td>● Conventional chromosome analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>● FISH - t(9;22) BCR/ABL1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● Ph-Like ALL Fusion Multiplex Panel (ABL1, JAK2, Kinase: ABL2, PDGFRB, CSF1R, TYK2, NTRK3)</td>
</tr>
</tbody>
</table>

ALL = acute lymphocytic/lymphoblastic leukemia
AML/MDS = acute myelogenous leukemia/myelodysplasic syndrome

Approved by the Executive Committee of the Medical Staff on 2/27/2018

Department of Clinical Effectiveness V4
Leukemia – continued

<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>DIAGNOSIS</th>
<th>CYTOGENETICS</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia – continued</td>
<td>AML/MDS</td>
<td>Conventional chromosome analysis</td>
<td>FLT3, ASXL1, IDH1, CEBPA, DNMT3A, JAK2, aCGH panel (chr 5, 7, 8, 17, 20)</td>
</tr>
<tr>
<td>APL</td>
<td>Conventional chromosome analysis</td>
<td>t(15;17) PML/RARA</td>
<td>FLT3, KIT (exon 17), KRAS, MPL, NPM1, NRAS, RUNX1, U2AF1, SRSF2, ZRSR2</td>
</tr>
<tr>
<td>APL – Peripheral Blood</td>
<td>FISH – PML/RARA t(15;17)</td>
<td>t(15;17) PML/RARA</td>
<td></td>
</tr>
<tr>
<td>Aplastic Anemia</td>
<td>Conventional chromosome analysis</td>
<td>TCRB clonality (TCR-BETA chain gene)</td>
<td></td>
</tr>
<tr>
<td>Burkitt Leukemia</td>
<td>Conventional chromosome analysis, FISH - MYC</td>
<td>IGH clonality, TP53</td>
<td></td>
</tr>
<tr>
<td>Burkitt Leukemia Peripheral Blood</td>
<td>FISH - MYC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL - Peripheral Blood with or without Bone Marrow</td>
<td>Conventional chromosome analysis, FISH – CLL Panel</td>
<td>Somatic Hypermutation, Mutation Analysis for (EndCLL Assay V1): ATM, BTK, PLCG2, TP53, BIRC3, NOTCH1, SF3B1, IGH Clonality, aCGH panel (chr 5, 7, 8, 17, 20)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- APL = acute promyelocytic leukemia
- CLL = chronic lymphoblastic leukemia

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.
<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>DIAGNOSIS</th>
<th>CYTOGENETICS</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia –</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CML</td>
<td>Hairy Cell Leukemia</td>
<td>Conventional chromosome analysis</td>
<td>ABL1 gene mutation (kinase domain) quantitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FISH – BCR/ABL1 t(9;22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMML</td>
<td>Conventional chromosome analysis</td>
<td>ABL1 gene mutation (kinase domain) qualitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FISH – BCR/ABL1 t(9;22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CML – Blast Phase</td>
<td>Conventional chromosome analysis</td>
<td>ABL1 gene mutation (kinase domain) qualitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HES, Mastocytosis</td>
<td>Conventional chromosome analysis</td>
<td>FIP1L1/PDGFRA (Hypereosinophilic Syndrome)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOLECULAR BIOMARKERS

- ABL1 kinase domain mutation
- ABL1 p.T315I mutation (quantitative)
- ASXL1 mutation
- CALR mutation
- CSF3R mutation
- EZH2 mutation
- JAK2 exon 12 mutation
- JAK2 v617F mutation
- KIT mutation
- MPL mutation
- TET2 mutation
- TP53 mutation
- FIP1L1-PDGFR fusion
- t(9;22) BCR-ABL1 quantitative PCR

CML = chronic myeloid leukemia
HES = hypereosinophilic syndrome
CMML = chronic myelomonocytic leukemia
MPN = myeloproliferative neoplasms

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.
<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>DIAGNOSIS</th>
<th>CYTOGENETICS</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia – continued</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukemia – continued</td>
<td>Leukemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukemia – continued</td>
<td>MF - Peripheral Blood</td>
<td>Conventional chromosome analysis</td>
<td>JAK2, MPL, MPL, JAK2, BCR/ABL1, E2A/PBX1, IL2RB, TET2</td>
</tr>
<tr>
<td>Leukemia – continued</td>
<td>PV, ET, MF</td>
<td>Conventional chromosome analysis</td>
<td>JAK2, MPL, ASXL1, CALR, TET2, EZH2</td>
</tr>
<tr>
<td>Leukemia – continued</td>
<td>T Cell Disorders - Peripheral Blood</td>
<td>EBV</td>
<td></td>
</tr>
<tr>
<td>Leukemia – continued</td>
<td>T Cell Disorders</td>
<td>Conventional chromosome analysis</td>
<td>TCRB clonality, TCRG clonality</td>
</tr>
<tr>
<td>Leukemia – continued</td>
<td>T-Prolymphocytic Leukemia (T-PLL)</td>
<td>FISH - 14q32</td>
<td>IL2RG, JAK1, JAK3, STAT3, STAT5B</td>
</tr>
<tr>
<td>Leukemia – continued</td>
<td>T-Large Granular Lymphocytic Leukemia (T-LGL)</td>
<td>Conventional chromosome analysis</td>
<td>STAT3, STAT5B</td>
</tr>
</tbody>
</table>

MF = Mycosis fungoides PV = Polycythemia Vera ET = Essential thrombocytopenia
<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>DIAGNOSIS</th>
<th>CYTOGENETICS</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphoma</td>
<td>Burkit Lymphoma</td>
<td>• Conventional chromosome analysis</td>
<td>• IGH clonality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH - MYC</td>
<td>• TP53</td>
</tr>
<tr>
<td></td>
<td>Burkit Lymphoma Peripheral Blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diffuse Large B-Cell Lymphoma</td>
<td>FISH - MYC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mantle Cell Lymphoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myeloma</td>
<td>Plasma Cell Myeloma</td>
<td>• TP53</td>
<td>• MYD88 (codon 265)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• EZH2 (codon 646)</td>
<td>• CARD11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NOTCH1 – Exons 26, 27, 34</td>
<td>• CD79A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MYD88 (codon 265)</td>
<td>• CD79B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• KRAS mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BRAF mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FGFR3 mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waldenstrom’s Macroglobulinemia</td>
<td>• MYD88 (codon 265)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CXCR4</td>
<td></td>
</tr>
</tbody>
</table>

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.
Brain/Neuro-Oncology

Diffuse Glioma

FISH/1p19q:

Immunohistochemistry/BRAF:

Immunohistochemistry/EGFR528:

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

Brain/Neuro-Oncology – continued

Diffuse Glioma

Molecular/IDH1/IDH2:

Capper, D., Sahm, F., Hartmann, C., et al. (2010). Application of mutant IDH1 antibody to differentiate diffuse glioma from nonneoplastic central nervous system lesions and therapy-induced changes. *American Journal of Surgical Pathology, 34*(8), 1199-1204. doi: http://dx.doi.org/10.1097/PAS.0b013e3181e7740d.

SUGGESTED READINGS - continued

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS - continued

Diffuse Glioma

Molecular/IDH1/Multigene predictor:

Molecular/PIK3CA:

Immunohistochemistry/PTEN:

Molecular/CIMP:

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS - continued

Low Grade Glioma

Molecular/BRAF:

Molecular/MGMT:

FISH/1p/19q:

Continued on next page
Breast

SUGGESTED READINGS - continued

Immunohistochemistry/ER and Immunohistochemistry/PR:

Immunohistochemistry/Ki67:

Immunohistochemistry/HER2/NEU and Immunohistochemistry/FISH/HER2/NEU:

Breast - continued

Molecular/ESR1:

Molecular/FGFR1:

SUGGESTED READINGS - continued

Continued on next page
Molecular/MammaPrint:

Molecular/Oncotype:

Molecular/PIK3CA:

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS - continued

Breast – continued

Molecular/TP53:

Endocrine

Adrenocortical Neoplasm

Immunohistochemistry/Ki67:

Medullary Thyroid Carcinoma

Molecular/RET mutation status:

Molecular/HHRAS KRAS & NRAS mutation status:
Sherman et al. (2013). Demonstrating patients with somatic RAS or RET mutation in MTC have better response to TKI therapy with cabozantinib than those lacking mutations.
ASCO presentation #6000.
SUGGESTED READINGS - continued

Endocrine – continued

Papillary, Follicular, Anaplastic Thyroid Carcinoma

Molecular/BRAF:

CMS SUPERSEDED Local Coverage Determination (LCD):

https://www.cms.gov/medicare-coverage-database/details/lcd-details.aspx?LCDId=35396&ContrId=338&ver=20&ContrVer=1&Keyword=biomarker&SearchType=O&PolicyType=Both&ArticleType=SAD%7cEd&Cntctr=338*1&Date=&KeyWordLookUp=Doc&SearchType=Advanced&CoverageSelection=Both&kt=1&bc=1AABABAAAAAAAS%3d%3d

Molecular/KRAS NRAS:

CMS SUPERSEDED Local Coverage Determination (LCD):

https://www.cms.gov/medicare-coverage-database/details/lcd-details.aspx?LCDId=35396&ContrId=338&ver=20&ContrVer=1&Keyword=biomarker&SearchType=O&PolicyType=Both&ArticleType=SAD%7cEd&Cntctr=338*1&Date=&KeyWordLookUp=Doc&SearchType=Advanced&CoverageSelection=Both&kt=1&bc=1AABABAAAAAAAAS%3d%3d

Molecular/PIK3CA:

Continued on next page
SUGGESTED READINGS - continued

Endocrine – continued

Papillary, Follicular, Anaplastic Thyroid Carcinoma

Immunohistochemistry/PTEN:

Parathyroid Carcinoma

Immunohistochemistry/Ki67:

Pituitary Neoplasm

Immunohistochemistry/Ki67:

Immunohistochemistry/p53:

Continued on next page
Gastrointestinal

Stomach and Esophagogastric Junction Adenocarcinoma

Immunohistochemistry/HER2/neu and FISH/HER2/neu:

Small Intestinal Adenocarcinoma

Immunohistochemistry/DNA mismatch repair enzymes and Molecular/MSI PCR, MLH1 promoter methylation, KRAS, BRAF:
Small bowel and appendiceal adenocarcinoma may be treated with systemic chemotherapy according to the NCCN Guidelines for Colon Cancer. NCCN Guidelines, Version 3.2013, Colon Cancer, Page COL-1.

Colorectal Adenocarcinoma

Immunohistochemistry/IHC mmr enzymes and Colorectal Adenocarcinoma/Molecular/MSI PCR:
The panel recommends that MMR protein testing be performed for all patients younger than 50 years old with colon cancer, based on an increased likelihood of Lynch syndrome in this population. MMR testing should also be considered for all patients with stage II disease, because stage II MSH-H patients may have a good prognosis and do not benefit from 5-FU adjuvant therapy. NCCN Guidelines, Version 3.2013, Colon Cancer, Page COL-A 4 of 5.

Suggested Readings - continued
SUGGESTED READINGS - continued

Gastrointestinal - continued

Colorectal Adenocarcinoma

Molecular/KRAS:

Molecular/BRAF:

Carcinoma of the Anal Canal

Immunohistochemistry/p16:

Immunohistochemistry/HPV:

Continued on next page
SUGGESTED READINGS - continued

Gastrointestinal - continued

Neuroendocrine

Immunohistochemistry/TTF:

Immunohistochemistry/CDX2:

Immunohistochemistry/Ki67:

Molecular/18Q LOH:

Continued on next page
SUGGESTED READINGS - continued

Gastrointestinal – continued

Neuroendocrine

MGMT Methylation:

Immunohistochemistry/DAXX, ATRX:

DAXX, ATRX, MEN1, PTEN, PIK3CA, TSC2:

Immunohistochemistry/MEN1:

Molecular/PTEN, TSC2:

Pseudomyxoma Peritonei

Molecular/IKRAS:

Continued on next page
SUGGESTED READINGS - continued

Genitourinary/Urology

Hepatic Adenoma

Molecular/Beta Catenin:

Prostate

Immunochemistry/PSA:

Immunochemistry/PAP:

Immunochemistry/CgA:

Molecular/BR1, TP53, PTEN, AR:

Molecular/BR1, TP53, AR:

Molecular/BR1, TP53:

Use of platinum-based chemotherapy in aggressive variant prostate carcinomas:

Continued on next page
Genitourinary/Urology - continued

Testicular, Suspected Testicular

Immunohistochemistry/hCG and AFP:

Upper Urinary Tract and Renal Pelvis Urothelial Carcinoma

FISH/HER2/neu:

DOI - 10.1038/ncpuro0318.

Immunohistochemistry and Molecular/MSI panel and MLH1 promoter methylation assay and PCR based MSI testing:

DOI - 10.1097/01.mp.0000024263.25043.0C

Continued on next page
Biomarkers - MD Anderson Approved

Gynecology

Ovarian and Uterine

FISH/Her2/neu:

AID – 10.1111/j.1525-1438.2007.00946.x [doi]

SUGGESTED READINGS - continued

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

Gynecology – continued

SUGGESTED READINGS - continued

Ovarian and Uterine

Immunohistochemistry/Her2/neu:

Continued on next page
Gynecology - continued

Ovarian and Uterine

Immunohistochemistry/HPV:

Immunohistochemistry/MSI:

Murphy, M. A., & Wentzensen, N. (2011). Frequency of mismatch repair deficiency in ovarian cancer: a systematic review This article is a US Government work and, as such, is in the public domain of the United States of America. *International Journal of Cancer*, 129(8), 1914-1922. doi: http://dx.doi.org/10.1002/ijc.25835.

SUGGESTED READINGS - continued

Continued on next page
Ovarian and Uterine

Immunohistochemistry/PTEN:

Gynecology - continued

Ovarian and Uterine

Molecular/BRAF:

Continued on next page
SUGGESTED READINGS - continued

Gynecology - continued

Ovarian and Uterine

Molecular/KRAS:

Continued on next page
These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

Gynecology - continued

SUGGESTED READINGS - continued

Ovarian and Uterine

Molecular/MLH1 promoter methylation:

Continued on next page
SUGGESTED READINGS - continued

Ovarian and Uterine

Molecular/MSI PCR:

Continued on next page
SUGGESTED READINGS - continued

Gynecology - continued

Ovarian and Uterine

Molecular/PI3K AKT:
SUGGESTED READINGS - continued

Gynecology - continued

Ovarian and Uterine

Molecular/PTEN:

continued on next page
SUGGESTED READINGS - continued

Head and Neck

Oropharynx/Nasopharynx/Oral Cavity

HPV and P16:

Nasopharynx Cancer and Salivary Cancer

EBV and erB-2 and HER2/neu:

Salivary Cancer

c-kit and EGFR and Androgen Receptor:
SUGGESTED READINGS - continued

Leukemia

ALL

Cytogenetics/Multiplex PCR (all subtypes):

Molecular-Genetics (Overview):

Molecular-Genetics (Philadelphia negative - all types):

Molecular-Genetics (Philadelphia negative B-lineage):

Burkitt subtype (c-myc):

Philadelphia positive subtype (BCR-ABL) - Overlap CML:

Philadelphia positive subtype (Mutations) - Overlap CML:

Continued on next page
SUGGESTED READINGS - continued

Leukemia – continued

ALL
IgH/TCR (all subtypes):

TP53 Mutations:
Chiaretti S, Brugnoletti F, Tavolaro, S et al. TP53 mutations are frequent in adult acute lymphoblastic leukemia cases negative for recurrent fusion genes and correlate with poor response to induction therapy. Haematologica 2013 May;98(5):e59-61

NOTCH1 and FBXW7:

Continued on next page
SUGGESTED READINGS - continued

AML/MDS

Molecular RUNX1:

Molecular SF3B1, SRSF2, U2AF1, ZRSR2:

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS - continued

AML/MDS

Molecular SF3B1:

AML/MDS/CMMML/Aplastic Anemia

Cytogenetics:

AML/MDS/CMMML/Aplastic Anemia

Molecular/FLT3:

Continued on next page
Leukemia – continued

Molecular/FLT3:

Molecular/DNMT3:

KIT:

IDH1/IDH2:

SUGGESTED READINGS - continued

Approved by the Executive Committee of the Medical Staff on 2/27/2018

2010

Department of Clinical Effectiveness V4
SUGGESTED READINGS - continued

Luekemia – continued

AML/MDS/CMML/Aplastic Anemia

RAS:

CEBPA:

NPM1:

Continued on next page
Leukemia – continued

AML/MDS/CMMML/Aplastic Anemia

JAK2/MPL:

Additional CMML:

APL

Cytogenetics/FISH:

FLT3:

SUGGESTED READINGS - continued
SUGGESTED READINGS - continued

APL

KIT:

IDH1/IDH2:

RAS:

NPM1:
Blood or bone marrow can be used for any of these tests. There are leukemia cells sampled by blood draw or bone marrow aspirate.

CLL

Metaphase karyotype:

FISH for 11q del, 17p del, +12, 13q del:

IGHV mutation status:

TP53 sequencing and ATM sequencing, TP53, BIRC3, BTK, NOTCH1, PLCG2, SF3B1:

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

Leukemia – continued

SUGGESTED READINGS - continued

CLL

TP53 sequencing and ATM sequencing, TP53, BIRC3, BTK, NOTCH1, PLCG2, SF3B1:

Continued on next page
SUGGESTED READINGS - continued

Leukemia – continued

CLL

TP53 sequencing and ATM sequencing, TP53, BIRC3, BTK, NOTCH1, PLCG2, SF3B1:

CML

Hairy Cell Leukemia

HES, Mastocytosis, MF, PV, ET

Continued on next page
SUGGESTED READINGS - continued

Leukemia – continued

T-Cell Disorders

TCRB clonality, TCRG clonality, FISH - 14q32:

Large Granular Lymphocytic Leukemia (T-LGL)

Somatic STAT3:

Prolymphocytic Leukemia (T-PLL)

JAK1, JAK3, STAT5B, IL2RG:

Lymphoma

Diffuse Large B-Cell Lymphoma

Mantle Cell

NOTCH1:

TP5:

Continued on next page
SUGGESTED READINGS - continued

Melanoma

Ekmeckioğlu S, Ellerhorst JA, Prieto VG, Johnson MM, Broemeling LD, Grimm EA. Tumor iNOS predicts poor survival for stage III melanoma patients. *Int J Cancer*. 2006 Aug 1;51(4):861-6

Myeloma

Plasma Cell

Continued on next page
SUGGESTED READINGS - continued

Sarcoma

Neuroblastoma

FISH/NMYC:

Desmoid fibromatosis

Molecular/CTNNBI:

Gastrointestinal stromal tumor

Thoracic

Non Small Cell Lung Cancer

Immunohistochemistry/PD-L1 22C3:

Non Small Cell Lung Cancer

Molecular/EGFR:

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS - continued

Thoracic – continued

Non Small Cell Lung Cancer

Molecular/EGFR:

Molecular/KRAS:

Copyright 2018 The University of Texas MD Anderson Cancer Center

Department of Clinical Effectiveness V4

Approved by the Executive Committee of the Medical Staff on 2/27/2018

Page 55 of 58

Continued on next page
SUGGESTED READINGS - continued

Non Small Cell Lung Cancer

Molecular/BRAF V600E:

Molecular/ELM4-ALK:

Molecular/BRAF V600E:

Continued on next page
Thoracic – continued

Non Small Cell Lung Cancer

FISH/ROS1:

FISH/Non Small Cell Lung Cancer/BRAF:
This practice consensus document was reviewed in conjunction with disease site representatives listed below. It was approved by the Molecular Testing Evaluation Committee (MTEC) at the University of Texas MD Anderson Cancer Center. The information is updated at least every two years or as new evidence emerges and is presented to MTEC for review and approval.

DEVELOPMENT CREDITS

This practice consensus document was reviewed in conjunction with disease site representatives listed below. It was approved by the Molecular Testing Evaluation Committee (MTEC) at the University of Texas MD Anderson Cancer Center. The information is updated at least every two years or as new evidence emerges and is presented to MTEC for review and approval.

MTEC Members, 2015:

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Disease Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTEC Co-Chair, Clinical Research</td>
<td>Aman U. Buzdar, MD</td>
<td>Brain - W.K. Alfred Yung, MD</td>
</tr>
<tr>
<td>MTEC Co-Chair, Pathology/Laboratory Medicine</td>
<td>Stanley R. Hamilton, MD</td>
<td>Breast – Debu Tripathy, MD</td>
</tr>
<tr>
<td>Bioinformatics and Computational Biology</td>
<td>Keith A. Baggery, PhD</td>
<td>Endocrine – Steven I. Sherman, MD</td>
</tr>
<tr>
<td>Pathology</td>
<td>Russell Broadus, MD, PhD</td>
<td>GI – Stanley R. Hamilton, MD</td>
</tr>
<tr>
<td>Cancer Prevention</td>
<td>Ernest Hawk, MD</td>
<td>Scott Kopetz, MD</td>
</tr>
<tr>
<td>Infectious Diseases</td>
<td>Dimitrios P. Kontoyiannis, MD</td>
<td>GU – Surena Matin, MD</td>
</tr>
<tr>
<td>GI Medical Oncology</td>
<td>Scott Kopetz, MD, PhD</td>
<td>Neema Navai, MD</td>
</tr>
<tr>
<td>Hematopathology</td>
<td>Raja Luthra, PhD</td>
<td>Gyn - Anil K. Sood, MD</td>
</tr>
<tr>
<td>Investigational Cancer Therapeutics</td>
<td>Funda Meric-Bersnstam, MD</td>
<td>Head & Neck – Randal S. Weber, MD</td>
</tr>
<tr>
<td>Thoracic/Head & Neck Med Oncology</td>
<td>Vali Papadimitrakopoulou, MD</td>
<td>Leukemia – William G. Wierda, MD</td>
</tr>
</tbody>
</table>

Disease Site Representatives:

<table>
<thead>
<tr>
<th>Disease Site</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>W.K. Alfred Yung, MD</td>
</tr>
<tr>
<td>Breast</td>
<td>Debu Tripathy, MD</td>
</tr>
<tr>
<td>Endocrine</td>
<td>Steven I. Sherman, MD</td>
</tr>
<tr>
<td>GI</td>
<td>Stanley R. Hamilton, MD</td>
</tr>
<tr>
<td>Unknown Primary</td>
<td>Gauri R. Varadhachary, MD</td>
</tr>
<tr>
<td>Melanoma</td>
<td>Michael A. Davies, MD</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>Robert J. Wells, MD</td>
</tr>
<tr>
<td>Thoracic</td>
<td>Bonnie S. Glisson, MD</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>Jason Robert Westin, MD</td>
</tr>
<tr>
<td>Hematopathology</td>
<td>Kenna R. Shaw, PhD</td>
</tr>
<tr>
<td>Nuclear Medicine</td>
<td>Heath Skinner, MD, PhD</td>
</tr>
<tr>
<td>Pathology</td>
<td>Stephen G. Swisher, MD</td>
</tr>
<tr>
<td>Anesthesiology and Critical Care</td>
<td>Robert J. Wells, MD</td>
</tr>
<tr>
<td>Hematopathology</td>
<td>Pediatrics</td>
</tr>
<tr>
<td>Institute for Personalized Cancer Therapy</td>
<td>Surgery</td>
</tr>
<tr>
<td>Radiation Oncology</td>
<td>Neuro-Oncology</td>
</tr>
</tbody>
</table>

Clinical Effectiveness Development Team:

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olga Fleckenstein</td>
<td>Clinical Effectiveness</td>
</tr>
<tr>
<td>Pauline Koinis, BSMT</td>
<td></td>
</tr>
</tbody>
</table>