Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

INITIAL EVALUATION

- Pathology\(^1\) consistent with non-small cell lung cancer
- History and physical
- Chest x-ray
- Laboratory studies to include hematologic and full chemistry panels
- CT chest and upper abdomen
- ECG if history of heart disease

T1-3, N0 (Stage IIB)
- Bronchoscopy
- Mediastinoscopy or endobronchial ultrasound-fine needle aspiration (EBUS-FNA)
- Brain MRI for symptomatic patients T1-2, N0
- Pulmonary function tests

T1-2, N0 (Stage I)
- PET scan (optional for T1,N0)

T1-2, N1 (Stage II)
- Bronchoscopy
- Mediastinoscopy or endobronchial ultrasound-fine needle aspiration (EBUS-FNA)
- Brain MRI for symptomatic patients T1-2, N0
- Pulmonary function tests

T1-3, N0 (Stage I)

T1-3, N1 (Stage II)

T1-2, N1 (Stage II)

T3, N0 (Stage IIB)

T3, N1 (Stage IIIA)

\(^1\) Consider MD Anderson approved Thoracic biomarkers https://www.mdanderson.org/content/dam/mdanderson/documents/for-physicians/algorithms/clinical-management/clin-management-biomarkers-web-algorithm.pdf
Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients. This algorithm is based on TNM Staging VI.

PRE-TREATMENT EVALUATION

Medically operable?

Yes

Surgical exploration and resection

- Stereotactic body radiation therapy
- Conventional definitive radiation therapy
- Consider local ablation therapy

No

Central lesion with negative mediastinal nodes or peripheral lesion

POST-OPERATIVE SURGICAL FINDINGS

Margins negative

T1, N0 (Stage IA)

- Resection or
- Consider concurrent chemotherapy/radiation therapy

Margins positive

T2, N0 (Stage IB)

- Observation (excluding T1-2, N1) or
- Adjuvant chemotherapy

T1-2, N1 (Stage IIA-B)

- Consider re-resection followed by
- Post-op adjuvant therapy: radiation therapy followed by chemotherapy or chemotherapy followed by radiation therapy

Margins negative and no extracapsular spread

T1-2, N2-3 (Stage IIIA-B)

- Adjuvant chemotherapy followed by radiation therapy

Margins positive or extracapsular spread

Unresectable

- Radiation therapy or chemoradiation for selected patients

Surveillance, see Page 7

1 In case of small (less than or equal to 2 cm) peripheral lesions that will undergo resection with a complete mediastinal and hilar lymph node dissection, integrated PET/CT has a high negative predictive value. EBUS-FNA is recommended but not required.

2 High risk patients display poorly differentiated tumors, vascular invasion, wedge resection, tumors greater than 4 cm, visceral pleural involvement, and unknown lymph node status

3 Platinum-based doublet therapy for selected patients

4 Radiation therapy alone or concurrent chemoradiation

5 Either concurrent radiation therapy followed by 2 cycles of posterior chemotherapy or 2 cycles of induction chemotherapy followed by concurrent chemoradiation

Department of Clinical Effectiveness V12
Approved by The Executive Committee of Medical Staff on 04/25/2017

Copyright 2017 The University of Texas MD Anderson Cancer Center
Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients. This algorithm is based on TNM Staging VI.

CLINICAL STAGE

| A | T3, N0 (Stage IIB) | T3, N1 (Stage IIIA) by CT |

PRE-TREATMENT EVALUATION

- Bronchoscopy
- Mediastinoscopy or EBUS-FNA
- MRI brain
- MRI of spine plus thoracic inlet for superior sulcus lesions (sup-sulcus protocol)
- PET scan
- Pulmonary function tests

CLINICAL EVALUATION

- Resectable
- Unresectable

INITIAL TREATMENT

- Surgery
- Adjuvant chemoradiation

Surgical re-evaluation

- Resectable
- Unresectable

Definitive chemoradiation

- Complete definitive chemoradiation
- Radiation therapy

Induction concurrent chemoradiation

- Surgery
- Induction chemotherapy

Margins negative

- Adjuvant chemotherapy

Margins positive

- Post-op adjuvant therapy:
 - Radiation therapy followed by chemotherapy
 - Chemotherapy followed by radiation therapy

Unresectable

- Surgery
- Induction chemotherapy or induction concurrent chemoradiation

1 Either concurrent radiation therapy followed by 2 cycles of posterior chemotherapy or 2 cycles of induction chemotherapy followed by concurrent chemoradiation
2 Platinum-based doublet therapy for selected patients
3 Radiation therapy alone or concurrent chemoradiation

Department of Clinical Effectiveness V12
Approved by The Executive Committee of Medical Staff on 04/25/2017
Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients. This algorithm is based on TNM Staging VI.

CLINICAL STAGE

B

T1-3, N2 (Stage IIIA)

- MRI brain
- PET scan
- Pulmonary function tests

Pleural/pericardial effusion

→ See Page 6, box D

Distant metastasis

→ See Page 6, box E

N3 disease

→ See Page 5, box C

Clinical N2 disease

- Bronchoscopy
- EBUS-FNA
- Consider mediastinoscopy if EBUS-FNA negative

N2, N3 nodes negative

- Surgical resection with mediastinal lymph node dissection

N2 nodes positive

- Induction chemotherapy versus induction chemoradiation

- Surgical re-evaluation

Definitive chemoradiation

- N3 nodes positive

→ See Page 5, box C

Metastasis

→ See Page 6, box E

INITIAL AND ADJUVANT TREATMENT

N0-1

- Adjuvant chemotherapy
- Surveillance if T1-2, N0

N2-3

- Adjuvant chemotherapy followed by radiation therapy

Margins positive

- Post-op adjuvant therapy:
 - Radiation therapy followed by chemotherapy or
 - Chemotherapy followed by radiation therapy

Unresectable

- Complete definitive chemoradiation

Resectable

- Surgical resection with adjuvant radiation, if eligible

Surveillance see Page 7

1 Concurrent chemoradiation for gross residual disease
2 Radiation therapy alone or concurrent chemoradiation
3 Platinum-based doublet therapy for selected patients
4 Either concurrent radiation therapy followed by 2 cycles of posterior chemotherapy or 2 cycles of induction chemotherapy followed by concurrent chemoradiation

Department of Clinical Effectiveness V12
Approved by The Executive Committee of Medical Staff on 04/25/2017

Copyright 2017 The University of Texas MD Anderson Cancer Center
Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients. This algorithm is based on TNM Staging VI.

<table>
<thead>
<tr>
<th>CLINICAL STAGE</th>
<th>PRE-TREATMENT EVALUATION</th>
<th>INITIAL AND ADJUVANT TREATMENT</th>
</tr>
</thead>
</table>
| **C** T1-3, N3 (Stage IIIB) | • PET scan
• MRI brain
• Pathological confirmation of equivocal N3 disease by:
 ○ Needle biopsy
 ○ Supraclavicular lymph node biopsy
 ○ Mediastinoscopy
 ○ Thoracoscopy
 ○ Mediastinotomy | N3 ruled out → See initial treatment for stage I-IIIA on Page 1
N3 confirmed → Definitive chemoradiation1
Distant metastasis or malignant pleural effusion. See Page 6, box E
Resectable → Surgery
 ○ Induction concurrent chemoradiation or
 ○ Induction chemotherapy
Unresectable → Definitive chemoradiation1
Marginally resectable → Surgery
 ○ Induction chemotherapy
 ○ Concurrent chemoradiation
 ● Surgical re-evaluation
Metastasis → See Page 6, box E
Resectable → Surgery
Unresectable → Complete definitive chemoradiation |

1 Either concurrent radiation therapy followed by 2 cycles of posterior chemotherapy or 2 cycles of induction chemotherapy followed by concurrent chemoradiation
2 High risk patients display poorly differentiated tumors, vascular invasion, wedge resection, tumors greater than 4 cm, visceral pleural involvement, and unknown lymph node status
Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients. This algorithm is based on TNM Staging VI.

CLINICAL STAGE

PRE-TREATMENT EVALUATION

- Thoracentesis or pericardiocentesis, if indicated
- Thoracoscopy, if thoracentesis indeterminate

INITIAL AND ADJUVANT TREATMENT

- Treatment according to T and N stage
- Treatment for distant metastasis or malignant pleural effusion
- If pleural effusion is recurrent, consider either pleurodesis or indwelling pleural catheter

D

Pleural/pericardial effusion

- Benign
- Malignant

E

Metastasis Stage IV

- Solitary brain metastasis
- Solitary metastasis elsewhere
- Multiple metastatic disease
- No metastasis

- Systemic chemotherapy with or without palliative radiation therapy (see principles of radiation therapy and chemotherapy)
- Surveillance, see Page 7

- Workup as clinically indicated

- Consider local ablation surgery, radiofrequency ablation (RFA), stereotactic body radiation therapy (SBRT)

- Resect brain lesion with or without whole brain radiation therapy or Stereotactic radiosurgery with or without whole brain radiation therapy

- Consider local ablation surgery, radiofrequency ablation (RFA), stereotactic body radiation therapy (SBRT)
Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients. This algorithm is based on TNM Staging VI.

SURVEILLANCE

- Physical exam every 6 months for 5 years
- CT chest every 6 months for 2 years, then annually

Recurrence or second primary?

STAGES I AND II

- Physical exam and CT chest every 2 – 3 months for 2 years, then every 6 months for 3 years, then annually

Recurrence or second primary?

STAGES III

Recurrence or second primary?

STAGE IV

- Physical exam and scans of involved sites every 2 – 3 months or as clinically indicated

Recurrence or second primary?

THERAPY FOR RECURRENCE AND METASTASIS

Locoregional recurrence
- Evaluate for surgical resection or
- Chemoradiation

Distant metastasis
See Page 6, box E

Second primary
Individualized treatment

Yes

Yes

No

No

Yes

Individualized treatment

No

See Page 6, box E

Continue with surveillance
Patients with inoperable stage III disease should be offered definitive concurrent chemoradiation with curative intent, which provides superior survival over radiation therapy alone.

Concurrent chemoradiation should be used only in patients with a suitable performance status (PS) who have not had excessive weight loss prior to starting treatment (i.e., PS 0-1 and with less than or equal to 5 – 10% weight loss).

Patients in need of immediate radiation therapy for symptom palliation (i.e., those with symptomatic bronchial obstruction, superior vena cava (SVC) obstruction, pain, etc.) should begin treatment with concurrent chemoradiation, followed by 2 additional cycles of chemotherapy upon completion of their concurrent chemoradiation.

For patients who do not need immediate radiation therapy for symptom palliation, acceptable sequencing of their chemoradiation is as follows:
- 2 cycles of induction chemotherapy, followed by concurrent chemoradiation
- Concurrent chemoradiation, and followed by 2 additional cycles of chemotherapy upon completion of their concurrent chemoradiation (“posterior chemotherapy”)

Acceptable chemotherapy regimens for induction and/or “posterior” chemotherapy include:
- Paclitaxel 200 mg/m² IV plus carboplatin AUC 6 IV, every 21 days
- Paclitaxel 200 mg/m² IV plus cisplatin 75 mg/m² IV, every 21 days
- Docetaxel 75 mg/m² IV plus carboplatin AUC 6 IV, every 21 days
- Docetaxel 75 mg/m² IV plus cisplatin 75 mg/m² IV, every 21 days
- Cisplatin 60 – 80 mg/m² IV day 1 plus etoposide 80 – 120 mg/m² IV days 1 – 3, every 21 days

Acceptable chemotherapy regimens for the concurrent chemoradiation phase of treatment include:
- Paclitaxel 50 mg/m² IV plus carboplatin AUC 2 IV, weekly during radiation therapy
- Docetaxel 20 – 25 mg/m² IV plus carboplatin AUC 2 IV, weekly during radiation therapy
- Docetaxel 20 – 25 mg/m² IV plus cisplatin 20 – 25 mg/m² IV, weekly during radiation therapy
- Cisplatin 50 mg/m² IV days 1, 8 and days 29, 36 plus etoposide 50 mg/m² IV days 1 – 5 and days 29 – 33

In patients receiving radiation therapy or chemoradiation with curative intent, treatment interruptions or dose reductions for temporary and manageable toxicities, such as esophagitis or myelosuppression, should be avoided. Careful patient monitoring and aggressive supportive care are preferable to treatment breaks in potentially curable patients. Patients should be evaluated at least once per every 5 fractions to monitor weight changes and toxicity.
Non-Small Cell Lung Cancer

PRINCIPLES OF CHEMOTHERAPY FOR PATIENTS WITH STAGES IIIB (EFFUSION) AND IV DISEASE

First-line chemotherapy

- Platinum-based combination chemotherapy prolongs survival and improves symptoms and quality of life compared to best supportive care for patients with acceptable PS.
- Platinum-based combination chemotherapy should be offered to all patients with PS of 0 – 1, and to selected patients with PS of 2.
- Patients with PS of 3 – 4 benefit little, if any, from cytotoxic chemotherapy.
- Elderly patients with acceptable PS should be offered chemotherapy, either combination platinum-based therapy or single-agent therapy (depending upon patient’s age and co-morbid conditions).
- Most platinum-based combination regimens yielded similar response rates (25% – 35%) and survival (median: 8 – 10 months; 1 year: 30% – 40%; 2 year: 10% – 15%).
- Acceptable first-line chemotherapy regimens include:
 - Paclitaxel 200 mg/m² IV plus carboplatin AUC 6 IV, every 21 days
 - Paclitaxel 200 mg/m² IV plus cisplatin 75 mg/m² IV, every 21 days
 - Docetaxel 75 mg/m² IV plus carboplatin AUC 6 IV, every 21 days
 - Docetaxel 75 mg/m² IV plus cisplatin 75 mg/m² IV, every 21 days
 - Gemcitabine 1,000 mg/m² IV days 1, 8 (plus or minus day 15) plus cisplatin 75 mg/m² IV day 1, every 21 days (if using day 1/8 gemcitabine schedule) or every 28 days (if using day 1/8/15 gemcitabine schedule)
 - Gemcitabine 1,200 mg/m² IV days 1, 8 plus carboplatin AUC 5 IV day 1, every 21 days
 - Vinorelbine 25 – 30 mg/m² IV days 1, 8, and 15 plus cisplatin 80 – 100 mg/m² IV day 1, every 28 days
 - Cisplatin 60 – 80 mg/m² IV day 1 plus etoposide 80 – 120 mg/m² IV days 1 – 3, every 21 days
 - Pemetrexed 500 mg/m² IV day 1 plus carboplatin AUC 6 IV day 1, every 21 days
 - Paclitaxel 150 – 200 mg/m² IV plus carboplatin AUC 6 IV plus bevacizumab 15 mg/kg IV every 21 days for metastatic non-small cell lung cancer in patients that have non-squamous cell histology
 - Crizotinib if EML4-ALK positive
 - Erlotinib if EGFR mutation present
 - Afatinib if EGFR mutation present
- Patients with non-squamous tumors should have their tumor tested for EGFR mutation, KRAS mutation, and EML4-ALK translocation. Presence of these mutations is predictive of response to tyrosine kinase inhibitors (TKI) and can be used in guiding first-line and second-line chemotherapy in selected patients.

1 Formulary restrictions may apply to this agent

Note: Consider Clinical Trials as treatment options for eligible patients. This algorithm is based on TNM Staging VI.
Non-Small Cell Lung Cancer

Second-line (and higher) chemotherapy
- Second-line chemotherapy prolongs survival and improves symptoms and quality of life compared with best supportive care in patients with acceptable PS.
- Second-line chemotherapy should be offered to all patients with PS of 0 – 1, and to selected patients with PS of 2.
- Patients with PS of 3 – 4 are unlikely to benefit from second-line chemotherapy.
- Elderly patients with acceptable PS should be offered second-line chemotherapy.
- Most single agents administered in the second-line setting yield similar response rates (10% partial response plus 30% stable disease) and survival (median: 8 months; 1 year: 20%).
- Second-line therapy should generally be given as sequential single agents. Acceptable second-line drugs include:
 - Docetaxel 75 mg/m² IV, every 21 days
 - Pemetrexed 500 mg/m² IV, every 21 days
 - Erlotinib 150 mg PO daily
 - Gemcitabine 1,000 mg/m² IV days 1, 8, and 15, every 28 days
 - Vinorelbine 25 – 30 mg/m² IV days 1, 8, and 15, every 28 days
 - Crizotinib if EML4-ALK positive
 - Erlotinib if EGFR mutation present
 - Ceritinib if EML4-ALK positive
 - Ramucirumab 10 mg/kg IV plus docetaxel 75 mg/m² IV, every 21 days
- If available, patients with non-squamous tumors should have their tumor tested for EGFR mutation, KRAS mutation, and EML4-ALK translocation. Presence of these mutations is predictive of response to tyrosine kinase inhibitors (TKI) and can be used in guiding first-line and second-line chemotherapy in selected patients.

1 Formulary restrictions may apply to this agent

PRINCIPLES OF CHEMOTHERAPY FOR PATIENTS WITH STAGES IIIB (EFFUSION) AND IV DISEASE (continued)

Note: Consider Clinical Trials as treatment options for eligible patients. This algorithm is based on TNM Staging VI.
Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients. This algorithm is based on TNM Staging VI.

PRINCIPLES OF RADIATION THERAPY

- Treatment of patients with potentially curable non-small cell lung cancer (NSCLC) (i.e., stages I – III) should be made after multidisciplinary consultation with a surgical, radiation and medical oncologist. Decisions about radiation therapy should account for patient’s stage, PS, tumor bulk, underlying pulmonary function, and potential overlap with normal tissue in the proposed radiation field.

- Patients with medically inoperable stage I or II NSCLC, as well as patients with stage III disease who are not candidates for chemoradiation, should be treated with radiation therapy alone with curative intent, to a total dose of 66 – 74 Gy at 200 cGy per fraction. Stereotactic body radiation therapy can be used for medically inoperable Stage I NSCLC patients.

- Patients with inoperable stage III disease should be offered definitive concurrent chemoradiation with curative intent as follows:
 - Concurrent chemoradiation should be used only in patients with a suitable PS who have not had excessive weight loss prior to starting treatment (i.e., PS 0 – 1 and with less than or equal to 5 – 10% weight loss).
 - The dose of radiation therapy for these patients is 60-70 Gy at 180 – 200 cGy per fraction in 30-35 fractions. The V20 for the total lung should be kept below 35% and total mean lung dose should be kept below 20 Gy for patients whose volumes exceed 40%.
 - Patients in need of immediate radiation therapy for symptom palliation (i.e., those with symptomatic bronchial obstruction, superior vena cava (SVC) obstruction, pain, etc) should begin treatment with concurrent chemoradiation, followed by 2 additional cycles of chemotherapy upon completion of their concurrent chemoradiation.

- For patients who do not need immediate radiation therapy for symptom palliation, acceptable sequencing of their chemoradiation is as follows:
 - 2 cycles of induction chemotherapy, followed by concurrent chemoradiation or
 - They may begin with concurrent chemoradiation, and then follow that with 2 additional cycles of chemotherapy upon completion of their concurrent chemoradiation
 - See “Non-Small Cell Lung Cancer Principles of Chemotherapy for Patients with Stage III Disease” for details of chemotherapy drugs, dosing and schedule.

- In patients who are to receive induction chemotherapy prior to beginning radiation or chemoradiation, consideration should be given to obtaining a baseline planning CT prior to starting induction chemotherapy.

- Patients should be well-immobilized for treatment (e.g., Vac-Loc bag, wingboard and T-bar). Fusion with PET/CT, if available, may help to elude involved lymph nodes and differentiate atelectasis from tumor involvement.

- Suggested treatment margins are gross tumor volume to clinical target volume (CTV) of 0.8 cm, and CTV to primary tumor volume of 0.5-1 cm. However, treatment plans should be individualized using 4 dimensional CT as it may be necessary to modify these suggested margins depending upon the specifics of the case.

- In general, elective nodal irradiation should be avoided as it may unnecessarily increase the amount of normal lung tissue in the radiated field.

- In patients receiving radiation therapy or chemoradiation with curative intent, treatment interruptions or dose reductions for temporary and manageable toxicities, such as esophagitis or myelosuppression, should be avoided. Careful patient monitoring and aggressive supportive care are preferable to treatment breaks in potentially curable patients. Patients should be evaluated at least once per every 5 fractions to monitor weight changes and toxicity.

Continued on Next Page
Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients. This algorithm is based on TNM Staging VI.

PRINCIPLES OF RADIATION THERAPY (continued)

- In patients receiving postoperative radiation therapy because of involved mediastinal nodes or resection margins which are close or positive, discussion with the thoracic surgeon and pathologist is helpful in designing appropriate target volumes. Recommended post-operative radiation therapy doses are as follows:
 - N2/N3 nodes 50 Gy
 - T4 primary 50 Gy
 - Extranodal extension 54 Gy
 - Positive margins 60 Gy
 - Gross residual disease 60 – 74 Gy (possibly with concurrent chemotherapy)

- Cobalt and orthovoltage beams are not appropriate for curative treatment due to the possibility of under-dosing, particularly of small tumors or tumor extensions. In addition, it may be preferable to avoid high-energy photons and instead use lower energies (4 – 10 MeV) in most patients. High-energy photons (15MeV, 18MeV, etc) may be preferable when used to treat larger gross tumor volumes surrounded by consolidated and/or atelectatic lung tissue, bulky lymphadenopathy or large blood vessels, thus achieving a better dose distribution and also an improved therapeutic ratio.
Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients. This algorithm is based on TNM Staging VI.

PRINCIPLES OF SURGICAL RESECTION

- It is strongly recommended that determination of resectability be performed by thoracic surgical oncologists who perform lung cancer surgery as a prominent part of their practice.
- All patients should undergo pulmonary function testing if considered for surgical resection.
- Patients with an FEV1 less than 70% of predicted should have xenon function studies.
- Patients with a predicted post-resection FEV1 below 35% should have complimentary exercise oxygen consumption testing.
- Patients with enlarged mediastinal nodes by CT scan or PET positive nodes should undergo mediastinal node biopsy prior to thoracotomy either by transthoracic FNA ultrasound guided biopsies via bronchoscopy or esophagoscopy techniques, or mediastinoscopy.
- Patients with co-morbidities require a detailed medical and anesthesia evaluations before surgery.
- All patients need to abstain from smoking a minimum of two weeks prior to thoracotomy. The use of nicotine replacement therapies is encouraged.
- The optimal surgery for non-small cell lung cancer is an anatomical lobectomy or pneumonectomy. In selected patients unable to undergo a lobectomy or pneumonectomy due to physiologic constraints, a more limited resection is an acceptable oncologic alternative.
- N1 and N2 node dissection and mapping should be performed on all patients undergoing a lung cancer resection. Complete node dissection should ideally be performed. When this is not feasible, a minimum of three N2 nodal stations should be sampled.
- Lung-sparing anatomic resections (i.e., sleeve lobectomies) are preferred over pneumonectomies, provided that negative margins can be achieved.
- Lobectomies performed by minimal invasive techniques need to adhere to all of the oncologic principles of complete resection with negative margins and full nodal dissection.
Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

SUGGESTED READINGS

Chemoradiation for Stage III Non-Small Cell Lung Cancer

Chemotherapy for Advanced Non-Small Cell Lung Cancer

Continued on Next Page

Department of Clinical Effectiveness V12
Approved by The Executive Committee of Medical Staff on 04/25/2017
Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

SUGGESTED READINGS

Chemotherapy for Advanced Non-Small Cell Lung Cancer (Continued)

EBUS-FNA:

Induction Chemotherapy for Operable Stage III Non-Small Cell Lung Cancer

Continued on Next Page

Page 15 of 19
SUGGESTED READINGS

Need for CT in Follow-up:

Post-Operative Adjuvant Chemotherapy for Resected Non-Small Cell Lung Cancer

Stage IIIA Disease:

Staging of Non-Small Cell Lung Cancer

Continued on Next Page
This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

Non-Small Cell Lung Cancer

SUGGESTED READINGS

Stereotactic Body Radiation for Non-Small Cell Lung Cancer

Surgery for Non-Small Cell Lung Cancer

Continued on Next Page
This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

SUGGESTED READINGS

Surgery for Non-Small Cell Lung Cancer

Non-Small Cell Lung Cancer

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

DEVELOPMENT CREDITS

This practice guideline is based on majority expert opinion of the Thoracic Center faculty at the University of Texas, MD Anderson Cancer Center. It was developed using a multidisciplinary approach that included input from the following medical, radiation and surgical oncologists:

George R Blumenschein, Jr, MD
Joe Y Chang, MD, PhD
Frank V Fossella, MD
Wendy Garcia, BS*
Bonnie S Glisson, MD
John V Heymach, MD, PhD
Wayne Hofstetter, MD
Firoze Jameel, MSN, RN, OCN*
Melenda Jeter, MD, MPH
Ritsuko Komaki Cox, MD
Zhongxing Liao, MD
Charles Lu, MD, SM
Reza Mehran, MD
Frank Mott, MD
Vali Papadimitrakopoulou, MD
David Rice, MD
Jack A Roth, MD
Boris Sepesi, MD
George Simon, MD
Stephen Swisher, MD
Anne Tsao, MD
Ara Vaporciyan, MD
Garrett Walsh, MD

✝Core Development Team
◆Clinical Effectiveness Development Team