Emerging immune therapeutics targeting glioma-mediated immune suppression

Amy B Heimberger MD
September 9, 2012
Neurological Surgery
Financial Disclosure

• Laboratory and Clinical Studies: National Institute of Health, American Association of Neurological Surgeons, American Brain Tumor Foundation, National Brain Tumor Foundation, Dr Marnie Rose Foundation, Bullock Research Fund, AstraZeneca

• Paid Consultant: Celldex Therapeutics, Bristol Meyers Squibb

• Stock/Equity: Celldex Therapeutics

• Licensing Fees: Celldex Therapeutics/Pfizer

• Patents: EGFRvIII peptide vaccine (CDX-110), WP1066
Companies that are in Phase II/III vaccine/immunotherapy development

- Advaxis
- AEterna Zentaris/Keryx
- Alfacell
- Anosys
- Antigenics
- Aphton
- Argos Therapeutics
- Avantogen
- AVAX Technologies
- AVI BioPharma
- Biomira
- BioVex
- Bristol Meyers Squibb
- CancerVax
- CancerVac (Prima BioMed)
- Celldex Therapeutics
- Cell Genesys
- Cytos Biotechnology
- Dendreon
- Favrique
- Genitope
- Genzyme
- Geron
- GlaxoSmithKline
- IDM Pharma
- Immutep
- ImmunoCellular Therapeutics
- Introgen Therapeutics
- LipoNova
- Ludwig Institute for Cancer Research/CSL
- Medarex
- Merck and Co
- Northwest Biotherapeutics
- NovaRx
- Onyx
- Oxford BioMEdica
- Pharmexa
- Pfizer
- Progenics
- Sanofi-aventis
- Stressgen Biotechnologies
- Therion Biologics
- The Vaccine Company
- Transgene
- Tvax Biomedical
- Vical
- Xenova (Celtic Pharma)
- YM BioSciences
<table>
<thead>
<tr>
<th>Agent delivered/Site</th>
<th>Sponsor or Centers Involved</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEP-3-KLH + GM-CSF (ACTIVATE)/Systemic</td>
<td>The Univ. of Texas M. D. Anderson Cancer Center/Duke University Medical Center</td>
<td>Median survival = 2.3 years Newly diagnosed; n=18</td>
</tr>
<tr>
<td>PEP-3-KLH + GM-CSF with temozolomide (ACT II)/Systemic</td>
<td>The Univ. of Texas M. D. Anderson Cancer/Duke University Medical Center</td>
<td>Median survival = 2.3 years Newly diagnosed; n=22</td>
</tr>
<tr>
<td>Dendritic cells + PEP-3-KLH/Systemic</td>
<td>Duke University Medical Center</td>
<td>Median survival = 1.8 years Newly diagnosed; n=14</td>
</tr>
<tr>
<td>Dendritic cells + autologous tumor lysates/</td>
<td>University of Leuven and Wurzburg</td>
<td>Median survival from relapse = 0.8 years Recurrent GBM; n=56</td>
</tr>
<tr>
<td>Dendritic cells + tumor homogenate/ Systemic</td>
<td>Cedars Sinai Medical Center</td>
<td>Median survival = 1.8 years for immune responders vs 1.2 for non newly diagnosed GBM; n=11</td>
</tr>
<tr>
<td>Dendritic cells + acid eluted tumor peptides/Systemic</td>
<td>UCLA</td>
<td>Median survival = 1.6 years for immune responders vs 1.1 for non recurrent GBM; n=21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Median survival = 2.0 years Newly diagnosed and recurrent GBM patients; n=12</td>
</tr>
</tbody>
</table>
Epidermal Growth Factor Receptor Mutation

Wild Type Amino Acid Sequence

LEU-GLU-GLU-LYS-LYS-VAL-CYS-...-PRO-ARG-ASN-TYR-VAL-VAL-THR-ASP-HIS

Wild Type cDNA Sequence

CTG-GAG-GAA-AAG-AAA-GTT-TGC-...-CCC-CGT-AAT-TAT-GTG-GTG-ACA-GAT-CAC

Variant III cDNA Sequence

CTG-GAG-GAA-AAG-AAA-GGT-AAT-TAT-GTG-GTG-ACA-GAT-CAC

Variant III Amino Acid Sequence

LEU-GLU-GLU-LYS-GLY-ASN-TYR-VAL-VAL-THR-ASP-HIS
Saline + GM-CSF
(Every 2 weeks i.d.)

ACTIVATE Trial

Immunologic Monitoring

Leukapheresis

Randomize

Saline + GM-CSF
(Every 2 weeks i.d.)

Randomize

PEPvIII-KLH + GM-CSF
(Every 1 month i.d.)

First patient treated in 7/04
Efficacy of PEP-3-KLH vaccine

Progression-Free Survival

- ACT III
- ACT II
- ACTIVATE
- Historical control

Overall Survival

- ACT III
- ACT II
- ACTIVATE
- Historical control

Matched controls went 3 months without progression
Efficacy of PEP-3-KLH vaccine

<table>
<thead>
<tr>
<th>Clinical Sites</th>
<th>Median PFS from Diagnosis (months)</th>
<th>Median OS from Diagnosis (months)</th>
<th>OS at 24 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT III (n=65)</td>
<td>31</td>
<td>12.3</td>
<td>24.3*</td>
</tr>
<tr>
<td>ACT II (n=22)</td>
<td>2</td>
<td>15.3</td>
<td>24.4</td>
</tr>
<tr>
<td>ACTIVATE (n=18)</td>
<td>2</td>
<td>14.2</td>
<td>24.6</td>
</tr>
<tr>
<td>Matched historical control (n=17)</td>
<td>1</td>
<td>6.4</td>
<td>15.2</td>
</tr>
<tr>
<td>Standard of care radiation/TMZ (n=287)</td>
<td>85</td>
<td>6.9</td>
<td>14.6</td>
</tr>
</tbody>
</table>

- In all three rindopepimut trials, study treatment began ~3 months post-diagnosis.
- Historical controls were treated at M.D. Anderson and matched for eligibility (EGFRvIII-positive, KPS ≥ 80%, complete resection, radiation/TMZ and without progression through ~3 months post-diagnosis).
- Confidence intervals for median PFS and OS for vaccinated patients do not overlap with those for historical control and standard of care.
- Mature data for ACT II and ACTIVATE are presented.

* ACT III survival data not yet final
Shifting the paradigm of the immune therapeutics for targeting malignancy

Tumors can be immunologically recognized/eliminated if global mediators of immune suppression are targeted.

Sufficiently potent immune responses need to be generated to overcome profound immune suppression and/or the immune suppression has to be negated/minimized (GTR).
Immunosuppression in Malignant Glioma Patients

Mechanisms

- Cytokines – IL-10, TGF, PGE2
- Lack of functional antigen presenting cells i.e. immunosuppressive microglia/macrophages (microglia, paucity of myeloid dendritic cells)
- Induction of T cell apoptosis (FasL; Galectin-3)
- Treg recruitment to the tumor
- Increase expression of immune regulatory molecules (B7-H1, HLA-G)
- Loss of antigen
- Decreased B2 microglobulin and/or HLA
- Induction of inappropriate T-helper function (skewing to Th2)
- Cancer stem cells/initiating cells
- Tumor hypoxia/HIF-1α

Manifestations

- Decreased delayed type hypersensitivity responses to recall antigens
- Diminished antibody responses
- Impaired T cell proliferation and responses to IL-2
- Impaired cytotoxic/effector T cell responses
- T cell anergy/unresponsiveness
Enrichment of immune response in the mesenchymal subtype

Immune suppressive gene % mRNA overexpression

<table>
<thead>
<tr>
<th>Gene</th>
<th>Proneural</th>
<th>Mesenchymal</th>
<th>Classical</th>
<th>Neural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galectin-3</td>
<td>0</td>
<td>9</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>VEGF</td>
<td>9</td>
<td>23</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>IL-10</td>
<td>4</td>
<td>34</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>IL-23</td>
<td>5</td>
<td>18</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>TGF-β</td>
<td>2</td>
<td>54</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>PD-1</td>
<td>13</td>
<td>7</td>
<td>41</td>
<td>31</td>
</tr>
<tr>
<td>PD-L1</td>
<td>0</td>
<td>21</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>20</td>
<td>36</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>CSF-1</td>
<td>2</td>
<td>34</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>CCL2</td>
<td>4</td>
<td>43</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>CCL-22</td>
<td>13</td>
<td>29</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>CD163</td>
<td>5</td>
<td>32</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>CD204</td>
<td>4</td>
<td>46</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>MIC-1</td>
<td>11</td>
<td>38</td>
<td>31</td>
<td>17</td>
</tr>
<tr>
<td>Arginase</td>
<td>4</td>
<td>14</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>CD47</td>
<td>13</td>
<td>13</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>IL-6</td>
<td>11</td>
<td>32</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>gp130</td>
<td>0</td>
<td>13</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Jak2</td>
<td>5</td>
<td>11</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>STAT3</td>
<td>5</td>
<td>23</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Pim-1</td>
<td>5</td>
<td>41</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>SOCS3</td>
<td>7</td>
<td>43</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>STAT5A</td>
<td>4</td>
<td>41</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>STAT5B</td>
<td>18</td>
<td>9</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>CD4</td>
<td>5</td>
<td>48</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>ICOS</td>
<td>5</td>
<td>13</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>IDO</td>
<td>18</td>
<td>16</td>
<td>20</td>
<td>7</td>
</tr>
</tbody>
</table>

Immune effector gene % mRNA overexpression

<table>
<thead>
<tr>
<th>Gene</th>
<th>Proneural</th>
<th>Mesenchymal</th>
<th>Classical</th>
<th>Neural</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-γ</td>
<td>11</td>
<td>20</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>IL-1</td>
<td>13</td>
<td>16</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>IL-2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>IL-4</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>IL-7</td>
<td>7</td>
<td>29</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>IL-12</td>
<td>9</td>
<td>18</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>IL-15</td>
<td>11</td>
<td>27</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>TNF-α</td>
<td>20</td>
<td>21</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>CD3</td>
<td>13</td>
<td>30</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>CD8α</td>
<td>16</td>
<td>25</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>CD8β</td>
<td>4</td>
<td>25</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>CD80</td>
<td>5</td>
<td>25</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CD86</td>
<td>4</td>
<td>43</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>CD40</td>
<td>11</td>
<td>30</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>HLA-A</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>HLA-B</td>
<td>4</td>
<td>18</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>HLA-C</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>HLA-DRA</td>
<td>7</td>
<td>29</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>HLA-DQA1</td>
<td>16</td>
<td>38</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>HLA-DPB1</td>
<td>9</td>
<td>38</td>
<td>6</td>
<td>17</td>
</tr>
</tbody>
</table>
Rationale for anti-CTLA-4 in GBM

Fecci, CCR, 2007
RTOG 1125 Trial: Phase II/III

Sample size: 815; 190 for the phase II component

Primary Endpoints
- Phase II: Progression-free survival
- Phase III: Overall survival

Secondary Endpoints
- Phase II: Treatment-related toxicities
- Phase III: Progression-free survival, Treatment-related toxicities
- Net Clinical Benefits (NCB): Symptom burden measured by the MDASI-BT; HRQOL measured by the EORTC-QLQ30/BN20 instrument; and neurocognitive function measured the Hopkins Verbal Learning Test

Immune monitoring components: correlation with clinical responses
- Baseline immune competency
- ALC recovery kinetics
- Serum chemokine and cytokine profiles (Multiplex and Meso scale)
- T cell subset and phenotypic analysis
- T cell immune responses (EPIMAX)
- TCR repertoire (NanoString)
- HLA
- Intratumoral immune response

Molecular profile

6000 cGy + TMZ

Randomize based on molecular profile

TMZ d 1-5 of 28-d cycle + Ipi iv q 4 wks 6 cycle maximum

Ipi IVq 3 months x 6 cycles

placebo IV q 3 months x 6 cycles
Immunosuppression in Malignant Glioma Patients

Mechanisms
- Cytokines – IL-10, TGF, PGE2
- Lack of functional antigen presenting cells i.e. immunosuppressive microglia/macrophages (microglia, paucity of myeloid dendritic cells)
- Induction of T cell apoptosis (FasL; Galectin-3)
- Treg recruitment to the tumor
- Increase expression of immune regulatory molecules (B7-H1, HLA-G)
- Loss of antigen
- Decreased B2 microglobulin and/or HLA
- Induction of inappropriate T-helper function (skewing to Th2)
- Cancer stem cells/initiating cells
- Tumor hypoxia/HIF-1α

Manifestations
- Decreased delayed type hypersensitivity responses to recall antigens
- Diminished antibody responses
- Impaired T cell proliferation and responses to IL-2
- Impaired cytotoxic/effector T cell responses
- T cell anergy/unresponsiveness

Is there a common pathway?
The STAT3 pathway is a key regulatory pathway in global immune suppression

- pSTAT3 becomes active in immune cells in the presence of malignancy.
- Induces the expression of immune suppressive cytokines
- STAT3 activity turns off antigen presenting cells like dendritic cells.
- STAT3 suppresses macrophage/microglia activation and function; induces M2 macrophages.
- STAT3 is a transcriptional regulator of FoxP3 in Tregs.
- Ablating STAT3 in hematopoietic cells in mice resulted in marked enhancement of immune responses and marked anti-tumor activity.
- STAT3 blockade in the immune cells from glioma patients can restore T cell proliferation and responses.
- Can be found in the peripheral blood of malignant glioma.
The STAT3 pathway is active in many cancers and especially within malignant gliomas

- Constitutive activation is observed in majority of many malignancies or can be induced by EGF, PDGF, IL-6, CMV.
- Upon phosphorylation of tyrosine705 (p-STAT3), dimerization occurs and subsequent nuclear translocation.
- The p-STAT3 is a potent transcriptional factor that regulates key factors that mediate tumor proliferation and survival (e.g., cyclin D1, p53, BCL-XL), migration and invasion (e.g., MMP-2, MMP-9), and angiogenesis by VEGF, basic fibroblast growth factor, and HIF-1α.
- Is a negative prognostic factor for survival.
- Shown to mediate the proneural to mesenchymal transition.
- Maintains “stemness”.

Diagram: A schematic representation of the STAT3 pathway, showing interactions with other signaling molecules such as EGF, IL-6, and various transcription factors and downstream effectors.
p-STAT3 expression within anaplastic astrocytomas was a negative prognostic factor

(p = 0.02)

(p-STAT-3 Negative)

(median: 34.6 mo, 95% CI, 33.9 mo-NA)

(p-STAT-3 Positive)

(median: 12.2 mo, 95% CI, 6.2 mo-NA)

Abou-Ghazal, CCR, 2008
Induction of high-grade malignant gliomas in immune competent mice (Ntv-a model)

The RCAS/tv-a System

- **Transgene**
 - Nestin tv-a
- **Target**
 - Glioneuronal Progenitors
- **RCAS Vector**
 - gag, pol, env, PDGF-B, LTR

TV-A (ALV-A Receptors)

- TVA
- Avian Leukosis Virus

Olig 2

- RCAS-PDGFB
- RCAS-PDGFB+RCAS-STAT3

Notch1

VEGF

- Tumor Incidence
- High Grade
- Low Grade

Doucette, Neuro-Oncology,
WP1066: Blocks nuclear translocation of dimerized p-STAT3

Caffeic Acid

WP1066

Courtesy of W Priebe
WP1066: Achieves preferential deposition in the CNS
Key Findings of *in vitro* WP1066

Potent inhibitor of STAT3

Inhibits cancer stem cells

Inhibits Tregs

Enhances tumor cytotoxicity

Enhances microglia function

Hussain, CR, 2007; Kong, CCR, 2008
WP1066 exerts potent in vivo efficacy against intracerebral melanoma and gliomas

Kong, CCR, 2008; Kong, CCR 2010; Doucette, NO 2012
WP1066 modulates the tumor microenvironment and immune response
The STAT3 pathway and therapeutic treatment failure

In collaboration with J. de Groot
WP1066 demonstrates minimal in vivo toxicity

Table 1 Systemic histopathological effects of WP1066 in C57BL/6 mice

<table>
<thead>
<tr>
<th>Drug</th>
<th>Administration Route</th>
<th>Total (mg/kg)</th>
<th>Pathology of Systemic Organs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spleen</td>
</tr>
<tr>
<td>Vehicle</td>
<td>i.p.</td>
<td>N/A</td>
<td>1/10^b</td>
</tr>
<tr>
<td>WP1066</td>
<td>i.p.</td>
<td>20</td>
<td>4/5^a</td>
</tr>
<tr>
<td>WP1066</td>
<td>i.p.</td>
<td>10</td>
<td>4/10^a</td>
</tr>
<tr>
<td>Vehicle</td>
<td>o.g.</td>
<td>N/A</td>
<td>3/10^a</td>
</tr>
<tr>
<td>WP1066</td>
<td>o.g.</td>
<td>40</td>
<td>0/5</td>
</tr>
</tbody>
</table>

a hemosiderin staining within macrophages
b autolysis
c chronic inflammatory infiltrate in connective tissue adjacent to the liver
d likely post-mortem bacterial endocarditis
e pulmonary congestion
f reactive lymphoid follicles with germinal center
g chronic inflammation
Investigational New Drug (IND) application

- Initial IND has been submitted (11-21-2011) with funding support from the SBIR I and II mechanisms and philanthropy

- Review call with the FDA has been completed (12-21-2011)
 - FDA is requiring second species toxicity and PK studies
 - FDA is requiring more detail on formulation and release criteria

Drug (API) is being made and formulated (CMC)

Anticipated (soon) submission of Phase I clinical trial to MDACC IRB
Key miRNAs down modulated in gliomas

<table>
<thead>
<tr>
<th>miRNA</th>
<th>relative down regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-124</td>
<td>24.6</td>
</tr>
<tr>
<td>miR-3172</td>
<td>13.8</td>
</tr>
<tr>
<td>miR-138</td>
<td>13.4</td>
</tr>
<tr>
<td>miR-3196</td>
<td>8.5</td>
</tr>
<tr>
<td>let-7b</td>
<td>7.3</td>
</tr>
<tr>
<td>let-7e</td>
<td>6.9</td>
</tr>
<tr>
<td>miR-1826</td>
<td>5.9</td>
</tr>
<tr>
<td>miR-1228*</td>
<td>5.8</td>
</tr>
<tr>
<td>miR-4284</td>
<td>5.6</td>
</tr>
<tr>
<td>let-7d</td>
<td>5.6</td>
</tr>
<tr>
<td>miR-3162</td>
<td>5.4</td>
</tr>
<tr>
<td>miR-874</td>
<td>5.2</td>
</tr>
<tr>
<td>let-7c</td>
<td>5.2</td>
</tr>
<tr>
<td>miR-103</td>
<td>5</td>
</tr>
<tr>
<td>miR-128</td>
<td>4.9</td>
</tr>
<tr>
<td>let-7a</td>
<td>4.7</td>
</tr>
<tr>
<td>miR-26a</td>
<td>4.5</td>
</tr>
<tr>
<td>miR-762</td>
<td>4.5</td>
</tr>
<tr>
<td>miR-7</td>
<td>4.2</td>
</tr>
</tbody>
</table>
miR-124 expression is lost in all gliomas

<table>
<thead>
<tr>
<th>Tumor Pathology</th>
<th>miR-124 positive samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glioblastoma</td>
<td>0/150</td>
</tr>
<tr>
<td>Anaplastic astrocytoma</td>
<td>0/24</td>
</tr>
<tr>
<td>Low Grade Astrocytoma</td>
<td>0/1</td>
</tr>
<tr>
<td>Subependymoma</td>
<td>0/2</td>
</tr>
<tr>
<td>Gliosarcoma</td>
<td>0/6</td>
</tr>
<tr>
<td>Oligodendroglioma</td>
<td>0/24</td>
</tr>
<tr>
<td>Mixed Oligoastrocytoma</td>
<td>0/5</td>
</tr>
<tr>
<td>Anaplastic Oligodendroglioma</td>
<td>0/16</td>
</tr>
<tr>
<td>Anaplastic Mixed Oligodendroglioma</td>
<td>0/9</td>
</tr>
</tbody>
</table>
miR-124 targets STAT3
MiR-124 influences the immune biology of cancer stem cells
miR-124 blocks glioma growth
Scramble miR-124

Spenocytes: GL261

% Killing of GL261

Scramble control

miR-124

CD4

Scramble

miR-124

IFN-γ

Scramble

miR-124

CD8

IFN-γ

Scramble

miR-124

TNF-α

Scramble

miR-124
miR-124 exerts a therapeutic effect against heterogeneous gliomas
MiR-124 induces immune effector responses from GBM patients

IFNγ producing CD4+ T cells

IL-2 producing CD4+ T cells

TNFα producing CD4+ T cells

pSTAT3 positive CD4+ T cells

IFNγ producing CD8+ T cells

IL-2 producing CD8+ T cells

TNFα producing CD8+ T cells

pSTAT3 positive CD8+ T cells

P = 0.0088

P = 0.0009

P = 0.0026

P = 0.0702

P = 0.0184

P = 0.0078

P = 0.099

P = 0.0002
Key Considerations for Immune Therapeutic Clinical Trials

• Sufficiently potent immune responses need to be generated to overcome profound immune suppression and/or the immune suppression has to be negated/minimized (GTR)
• Agents that are targeted to a single immune suppressive mechanism are unlikely to have durable efficacy and will likely only treat a select subset of patients
• Targeting “drivers” of malignancy are more likely to be efficacious
• Immune suppression is heterogeneous and needs to be considered in patient stratification - patient specific tailored immune therapeutics based on tumor characteristics is a future goal
Acknowledgments

Laboratory Personnel:
- Lamonne Crutcher
- Tiffany Doucette
- Ling Yuan Kong
- Fei Wang
- Jun Wei
- Shuo Xu

Key Collaborators:
- Ken Aldape
- Oliver Bogler
- Charles Conrad
- Greg Fuller
- Joy Gumin
- Frederick Lang
- Waldemer Priebe
- John Sampson
- Jeffrey Weinberg

- Darell Bigner
- Howard Colman
- Izabela Fokt
- Elizabeth Grimm
- Verlene Henry
- Timothy Madden
- Ganesh Rao
- Qiao Wei
- Raymond Sawaya