Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

Table of Contents

Solid Tumors:
- Brain/Neuro-oncology Page 2
- Breast .. Page 2
- Endocrine .. Page 3
- Gastrointestinal .. Pages 4, 5
- Genitourinary .. Page 6
- Gynecology .. Page 7
- Head and Neck .. Page 7
- Melanoma ... Page 8
- Sarcoma .. Page 9
- Thoracic ... Page 9
- Unknown Primary Page 9

Liquids:
- Leukemia ... Pages 11-14
- Lymphoma .. Page 15
- Myeloma ... Page 15

Liquid Biopsies .. Page 10

Suggested Readings Pages 16-73
- All Tumor Types Pages 16, 17
- Brain/Neuro-oncology Pages 17-20
- Breast .. Pages 21-23
- Endocrine .. Pages 24-27
- Gastrointestinal Pages 28-31
- Genitourinary/Urology Pages 31-33
- Gynecology Pages 34-43
- Head & Neck Page 44
- Liquid Biopsies Pages 45-51
- Leukemia ... Pages 52-64
- Lymphoma .. Pages 64, 65
- Melanoma .. Pages 66, 67
- Myeloma .. Page 67
- Sarcoma .. Pages 67-70
- Thoracic ... Pages 71-73

Development Credits Page 74

The Molecular Testing Evaluation Committee (MTEC) is responsible for the review and approval of requests for biomarker testing based on evaluating published data and determining if there is sufficient scientific and clinical interest for their use in standard care of patients at MD Anderson. The committee reports up to Medical Practice and the Executive Committee for the Medical Staff. Biomarkers approved by MTEC and available through Pathology and Laboratory Medicine using CLIA-compliant molecular diagnostic tests that satisfy the institutionally defined criteria are included in this document.

The following exception criteria must be met for orders which are not included in this document; additionally, the request must be approved by the internal MDACC Single Use Order Set Committee.

Exception criteria:
- The test is clinically justifiable: Molecular test results will guide treatment decisions, and the results will identify treatment selection among currently available therapies.
- The patient is appropriate for such therapies: The patient has a performance status of ECOG of 0 or 1 and is expected to live for at least three months.
- The patient has locally advanced or metastatic disease not appropriate for other therapies.
<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>CELL TYPE</th>
<th>FISH</th>
<th>IMMUNOHISTOCHEMISTRY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain/Neuro-Oncology</td>
<td>Glioma</td>
<td>1p/19q co-deletion</td>
<td>• BRAF V600E</td>
<td>• CDKN2A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• EGF R</td>
<td>• MET mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PTEN</td>
<td>• MGMT promoter methylation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>• NF1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NTRK1 fusion</td>
</tr>
<tr>
<td>Primitive Neuroectodermal Tumors/ Medulloblastoma</td>
<td>MYC</td>
<td>MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>• NTRK1 fusion</td>
<td>• NTRK2 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NTRK3 fusion</td>
</tr>
<tr>
<td>Breast</td>
<td>All invasive Cancer types</td>
<td>HER2/neu^2</td>
<td>• ER^1,^2</td>
<td>• ESR1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PR^1,^2</td>
<td>• FGFR1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• HER2/neu^2</td>
<td>• MammaPrint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ki-67 (MIB-1) labeling index^2</td>
<td>• NTRK1 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>• NTRK2 fusion</td>
</tr>
</tbody>
</table>

1 For DCIS specimens, ER and PR should be performed on the final surgical specimen and not the core biopsy since there may be invasive cancer in the surgical specimen in which case all biomarkers should be done on the invasive cancer (ER, PR, HER2/neu, Ki-67). If no invasive cancer seen, then ER and PR should be performed on the DCIS specimen.
2 For metastatic breast cancer cases, ER, PR, HER2/neu and Ki-67 should be obtained if ordered by the requesting physician as clinically indicated.
3 HER2/neu by FISH will only be performed if a 2+ or greater result is obtained by HER2/neu IHC, or in select 1+ IHC results as judged by the pathologist on the case, or if requested by the ordering or treating physicians as clinically indicated.

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.
<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>CELL TYPE</th>
<th>FISH</th>
<th>IMMUNOHISTOCHEMISTRY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocrine</td>
<td>Adrenocortical Carcinoma</td>
<td>*Ki-67 (MIB-1) labeling index</td>
<td>*NTRK1 fusion</td>
<td>*NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>*NTRK2 fusion</td>
<td>*PIK3CA mutation</td>
</tr>
<tr>
<td>Anaplastic Thyroid Carcinoma</td>
<td>*BRAF V600E</td>
<td></td>
<td>*BRAF mutation</td>
<td>*NTRK1 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*HRAS mutation</td>
<td>*NTRK2 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*KRAS mutation</td>
<td>*NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*NRAS mutation</td>
<td>*PIK3CA mutation</td>
</tr>
<tr>
<td>Follicular Thyroid Carcinoma / Hurthle Cell (oxyphilic) Thyroid Carcinoma</td>
<td>*MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td></td>
<td>*HRAS mutation</td>
<td>*NTRK2 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*KRAS mutation</td>
<td>*NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*NRAS mutation</td>
<td>*PIK3CA mutation</td>
</tr>
<tr>
<td>Medullary Thyroid Carcinoma</td>
<td>CDKN2C/CKS1B</td>
<td>*MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>*HRAS mutation</td>
<td>*NTRK2 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*KRAS mutation</td>
<td>*NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*NRAS mutation</td>
<td>*RET mutation</td>
</tr>
<tr>
<td>Papillary Thyroid Carcinoma (all variants)</td>
<td>*BRAF V600E</td>
<td></td>
<td>*BRAF mutation</td>
<td>*NTRK1 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*HRAS mutation</td>
<td>*NTRK2 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*KRAS mutation</td>
<td>*NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*NRAS mutation</td>
<td>*PIK3CA mutation</td>
</tr>
<tr>
<td>Parathyroid Carcinoma</td>
<td>*Ki-67 (MIB-1) labeling index</td>
<td></td>
<td>*NTRK1 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td></td>
<td>*NTRK2 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Pan-TRK</td>
<td></td>
<td>*NTRK3 fusion</td>
<td></td>
</tr>
<tr>
<td>Pituitary Carcinoma</td>
<td>*Ki-67 (MIB-1) labeling index</td>
<td></td>
<td>*NTRK1 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td></td>
<td>*NTRK2 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*p53</td>
<td></td>
<td>*NTRK3 fusion</td>
<td></td>
</tr>
</tbody>
</table>
Gastrointestinal Stomach & Esophagogastric Junction Adenocarcinoma
- **HER2/neu**
- **MET**
- **MSI** (MLH1, MSH2, MSH6, PMS2)

- **NTRK1** fusion
- **NTRK2** fusion
- **NTRK3** fusion

Colorectal Adenocarcinoma
- **HER2/neu**
- **BRAF V600E**
- Immunohistochemistry for DNA mismatch repair enzymes (MLH1, MSH2, MSH6, PMS2)
 - Note: MLH1 promoter hypermethylation analysis and **BRAF** mutation analysis will also be performed if immunohistochemistry shows loss of MLH1 and if sufficient tumor DNA is available for analysis.
- **HER2/neu**

- **BRAF** mutation
- **KRAS** mutation
- **MLH1** promoter hypermethylation analysis and **BRAF** mutation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)
- **MSI** by PCR

- **NTRK1** fusion
- **NTRK2** fusion
- **NTRK3** fusion

- **PIK3CA** mutation

1. **HER2/neu by FISH** will only be performed if a 2+ or greater result is obtained by **HER2/neu IHC**

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.
<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>CELL TYPE</th>
<th>FISH</th>
<th>IMMUNOHISTOCHEMISTRY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal continued</td>
<td>Hepatic Adenoma</td>
<td>MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>● CTNNB1 (β-catenin) mutation</td>
<td>● NTRK2 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>● NTRK1 fusion</td>
<td>● NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td>Hepatocellular</td>
<td>MET</td>
<td>● NTRK1 fusion</td>
<td>● NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MET</td>
<td>● NTRK2 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neuroendocrine</td>
<td>• ATRX</td>
<td>● 18q LOH</td>
<td>• RBI mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CDX2</td>
<td>• MGMT methylation</td>
<td>• TP53 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CgA</td>
<td>• PTEN mutation</td>
<td>• TSC2 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DAXX</td>
<td>• NTRK1 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NTRK2 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NTRK3 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pancreatic Cancer</td>
<td>MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>∙ NTRK1 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>∙ NTRK2 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>∙ NTRK3 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholangiocarcinoma</td>
<td>MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>∙ NTRK1 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>∙ NTRK2 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>∙ NTRK3 fusion</td>
<td></td>
</tr>
</tbody>
</table>

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>CELL TYPE</th>
<th>FISH</th>
<th>IMMUNOHISTOCHEMISTRY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genitourinary</td>
<td>Prostate</td>
<td>• AR</td>
<td>• PTEN</td>
<td>• NTRK1 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>• p53</td>
<td>• NTRK2 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PAP</td>
<td>• RB</td>
<td>• NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PSA</td>
<td></td>
<td>• PTEN</td>
</tr>
<tr>
<td></td>
<td>Testicular, Suspected Testicular</td>
<td>• AFP</td>
<td></td>
<td>• NTRK1 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• β HCG</td>
<td></td>
<td>• NTRK2 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td></td>
<td>• NTRK3 fusion</td>
</tr>
<tr>
<td>Urothelial Carcinoma</td>
<td>HER2/neu</td>
<td>• CK5/6</td>
<td>• BRAF mutation</td>
<td>• MTOR mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CK20</td>
<td>• CDKN2A mutation</td>
<td>• NTRK1 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GATA3</td>
<td>• FGFR1 mutation</td>
<td>• NTRK2 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HER2/neu</td>
<td>• FGFR3 mutation</td>
<td>• NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Immunohistochemistry for DNA mismatch repair enzymes (MLH1, MSH2, MSH6, PMS2)</td>
<td>• KRA5 mutation</td>
<td>• PIK3CA mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Note: MLH1 promoter hypermethylation analysis will also be performed if immunohistochemistry shows loss of MLH1 and if sufficient tumor DNA is available for analysis.</td>
<td>• MLH1 promoter hypermethylation analysis (only if immunohistochemistry for DNA mismatch repair enzymes has already been performed and shows loss of MLH1)</td>
<td>• PTEN mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MTAP</td>
<td>• MSI by PCR</td>
<td>• RB1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• FGFR1 fusion</td>
<td>• TP53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• FGFR2 fusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• FGFR3 fusion</td>
<td></td>
</tr>
<tr>
<td>DISEASE SITE</td>
<td>CELL TYPE</td>
<td>FISH</td>
<td>IMMUNOHISTOCHEMISTRY</td>
<td>MOLECULAR</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------------</td>
<td>---------------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Gynecology</td>
<td>Ovarian and Uterine Carcinoma</td>
<td>HER2/neu</td>
<td>HER2/neu</td>
<td>AKT1 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ER</td>
<td>BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PR</td>
<td>KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>MSI by PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PTEN</td>
<td>MLH1 promoter hypermethylation if applicable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HPV</td>
<td></td>
</tr>
<tr>
<td>Head and Neck</td>
<td>Oropharynx Carcinoma</td>
<td></td>
<td>p16</td>
<td>NTRK1 fusion</td>
</tr>
<tr>
<td></td>
<td>Nasopharynx Carcinoma</td>
<td></td>
<td>MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>NTRK2 fusion</td>
</tr>
<tr>
<td></td>
<td>Oral Cavity Carcinoma</td>
<td></td>
<td>HPV for high risk (in situ hybridization)</td>
<td>NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td>Salivary Carcinoma</td>
<td>HER2/neu</td>
<td>Androgen Receptor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown Primary Carcinoma</td>
<td></td>
<td>EGFR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>metastatic to cervical lymph node</td>
<td></td>
<td>Pan-TRK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HPV for high risk (in situ hybridization)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td></td>
</tr>
</tbody>
</table>

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.
<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>CELL TYPE</th>
<th>FISH</th>
<th>IMMUNOHISTOCHEMISTRY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>Cutaneous</td>
<td>BRAF V600E, PD-L1 28-8, PTEN, INOS, PTEN, MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>BRAF mutation, KIT mutation, NRAS mutation</td>
<td>NTRK1 fusion, NTRK2 fusion, NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td>Acral</td>
<td>BRAF V600E, PD-L1 28-8, PTEN, MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>BRAF mutation, KIT mutation, NRAS mutation</td>
<td>NTRK1 fusion, NTRK2 fusion, NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td>Mucosal</td>
<td>BRAF V600E, PD-L1 28-8, PTEN, MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>BRAF mutation, KIT mutation, NRAS mutation</td>
<td>NTRK1 fusion, NTRK2 fusion, NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td>Uveal</td>
<td>PD-L1 28-8, PTEN, MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>GNAQ, GNA11, Monosomy 3</td>
<td>NTRK1 fusion, NTRK2 fusion, NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td>Unknown Primary</td>
<td>BRAF V600E, PD-L1 28-8, PTEN, MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>BRAF mutation, GNAQ mutation, GNA11 mutation, KIT mutation</td>
<td>NTRK1 fusion, NTRK2 fusion, NTRK3 fusion</td>
</tr>
<tr>
<td>DISEASE SITE</td>
<td>CELL TYPE</td>
<td>FISH</td>
<td>IMMUNOHISTOCHEMISTRY</td>
<td>MOLECULAR</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>Desmoid Fibromatosis</td>
<td>MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>CTNNB1 (β-Catenin) mutation</td>
<td>NTRK2 fusion</td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal Stromal Tumor</td>
<td>• MSI (MLH1, MSH2, MSH6, PMS2) • Pan-TRK</td>
<td>KIT mutation</td>
<td>NTRK1 fusion</td>
</tr>
<tr>
<td></td>
<td>Neuroblastoma</td>
<td>MYCN (N-MYC)</td>
<td>• MSI (MLH1, MSH2, MSH6, PMS2) • Pan-TRK</td>
<td>NTRK1 fusion • NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td>Soft Tissue and Bone</td>
<td>• MSI (MLH1, MSH2, MSH6, PMS2) • NY-ES01 • PD-L1 • Pan-TRK</td>
<td>NTRK1 fusion • NTRK2 fusion • NTRK3 fusion</td>
<td></td>
</tr>
<tr>
<td>Thoracic</td>
<td>Non Small Cell Lung Carcinoma</td>
<td>• ALK rearrangement • MET • RET • ROS1 rearrangement • BRAF V600E • MET • MSI (MLH1, MSH2, MSH6, PMS2) • PD-L1 22C3</td>
<td>• BRAF mutation • EGFR mutation • EGFR Targeted Therapy Resistance Mutation (T790M, C7975 only) • EMLA4/ALK Fusion • KRA5 mutation</td>
<td>NTRK1 fusion • NTRK2 fusion • NTRK3 fusion</td>
</tr>
<tr>
<td>Unknown Primary</td>
<td>Breast, Gastric Profile</td>
<td>HER2/neu</td>
<td>• HER2/neu • MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>NTRK1 fusion • NTRK2 fusion • NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td>Lung Profile</td>
<td>ALK rearrangement</td>
<td>MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>EGFR mutation • NTRK1 fusion • NTRK2 fusion • NTRK3 fusion</td>
</tr>
<tr>
<td></td>
<td>Small Bowel, Colon Profile</td>
<td>MSI (MLH1, MSH2, MSH6, PMS2)</td>
<td>KRA5 mutation</td>
<td>NTRK1 fusion • NTRK2 fusion • NTRK3 fusion</td>
</tr>
<tr>
<td>DISEASE SITE</td>
<td>DIAGNOSIS</td>
<td>BIOMARKERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain/Neuro-oncology</td>
<td>Glioma</td>
<td>BRAF Mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breast</td>
<td>AKT1, BRCA1 mutation, BRCA2 mutation, ErBB2 full gene mutation, ESR1 mutation, PIK3CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glioma</td>
<td>BRAF mutation, AKT1, BRCA2 mutation, ErBB2 full gene mutation, ESR1 mutation, PIK3CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaplastic Thyroid Carcinoma</td>
<td>BRAF mutation, EML4/ALK fusion, HRAS mutation, KRAS mutation, RET mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medullary Thyroid Carcinoma</td>
<td>RET mutation¹,²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Papillary Thyroid Carcinoma</td>
<td>BRAF mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colorectal Adenocarcinoma</td>
<td>APC mutation²,³, Braf mutation²,³, KRAS mutation²,³, NRAS mutation²,³, PIK3CA mutation²,³, TP53 mutation²,³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small Intestinal Adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appendiceal Adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudomyxoma Peritonei (PMP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urothelial Carcinoma</td>
<td>BAF mutation, ERBB2 mutation, FGFR3 fusion, FGFR3 mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ovarian and uterine</td>
<td>BAF mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutaneous, Acral, Mucosal</td>
<td>BAF mutation²,³, KIT mutation²,³, NRAS mutation²,³, GNA11 mutation, GNAQ mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown Primary</td>
<td>BAF mutation²,³, KIT mutation²,³, NRAS mutation²,³, GNA11 mutation, GNAQ mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uveal</td>
<td>GNA11 mutation, GNAQ mutation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non Small Cell Lung Carcinoma</td>
<td>BAF mutation, EGFR sensitizing mutation, EGFR (T790M, C797S) mutation⁴, EML4/ALK fusion, ERBB2 full gene mutation, MET mutation, RET Fusion, ROS1 Fusion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹May also be used for prognostic determination (single use)
²May also be for optional follow-up sample, to estimate treatment response (single use)
³May also be for estimating treatment response baseline sample (single use)
⁴May also be for clinical suspicion for treatment resistance

PMP = Pseudomyxoma Peritonei
<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>DIAGNOSIS</th>
<th>CYTOGENETICS</th>
<th>FLOW</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia</td>
<td>ALL - New Patient Work-up for all patients</td>
<td>Conventional chromosome analysis</td>
<td>Acute leukemia screen</td>
<td>• ABL1 gene mutation (kinase domain) qualitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH - ABL2</td>
<td></td>
<td>• ABL1 gene mutation p.T315I quantitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH - t(9;22) BCR/ABL1</td>
<td></td>
<td>• FBXW7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH - CSF1R</td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – CRLF2</td>
<td></td>
<td>• NOTCH1 Exons 26, 27, 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – EPOR</td>
<td></td>
<td>• TP53 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – JAK2</td>
<td></td>
<td>• Multiplex PCR=t(4;11), t(1;19), t(6;9), t(12;21), t(9;22), t(15;17), t(8;21), inv(16)/t(16;16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – KMT2A (MLL)</td>
<td></td>
<td>• Ph-Like ALL Fusion Multiplex Panel (ABL1, JAK2, Kinase: ABL2, PDGFRB, CSF1R, TYK2, NTRK3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – MYC</td>
<td></td>
<td>• t(9;22) BCR/ABL1 Major (p210; b2a2/e13a2, b3a2/e14a2) Minor (p190; e1a2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – PDGFRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – TP53 CEP17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL - Peripheral Blood (Similar to Marrow)</td>
<td>FISH - MYC</td>
<td></td>
<td></td>
<td>• JAK2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NRAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• TP53</td>
</tr>
<tr>
<td>ALL - T Lineage</td>
<td>Conventional chromosome analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL – Philadelphia Negative</td>
<td>Conventional chromosome analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CD4/CD8 Ratio MRD B</td>
<td></td>
<td></td>
<td>• IGH clonality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Ph-Like ALL Fusion Multiplex Panel (ABL1, JAK2, Kinase: ABL2, PDGFRB, CSF1R, TYK2, NTRK3)</td>
</tr>
<tr>
<td>ALL – Philadelphia Positive</td>
<td>Conventional chromosome analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CD4/CD8 Ratio MRD B</td>
<td></td>
<td></td>
<td>• ABL1 gene mutation (kinase domain) qualitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• ABL1 gene mutation p.T315I quantitative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• TCRG clonality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• t(9;22) BCR/ABL1 Major (p210; b2a2/e13a2, b3a2/e14a2) Minor (p190; e1a2)</td>
</tr>
<tr>
<td>ALL - Relapsed</td>
<td></td>
<td></td>
<td></td>
<td>• JAK1 and JAK2 Targeted Mutation Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Ph-Like ALL Fusion Multiplex Panel (ABL1, JAK2, Kinase: ABL2, PDGFRB, CSF1R, TYK2, NTRK3)</td>
</tr>
</tbody>
</table>

ALL = acute lymphocytic/lymphoblastic leukemia

AML/MDS = acute myelogenous leukemia/myelodysplastic syndrome
<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>DIAGNOSIS</th>
<th>CYTOGENETICS</th>
<th>FLOW</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia –</td>
<td>AML/MDS</td>
<td>Conventional chromosome</td>
<td>• Acute Leukemia Screen</td>
<td>• ASXL1</td>
</tr>
<tr>
<td>continued</td>
<td></td>
<td>analysis</td>
<td>• MRD B</td>
<td>• aCGH panel (chr 5, 7, 8, 17, 20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PNH</td>
<td>• CEFP8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• CD38</td>
<td>• CEBPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Acute Leukemia Translocation Screen - t(4;11),</td>
<td>• DNMT3A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t(1;19), t(6;9), t(12;21), t(9;22), t(15;17),</td>
<td>• EZH2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t(8;21);inv(16)/t(16;16) Interpretation and</td>
<td>• FLT3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Report</td>
<td>• IDH1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• t(15;17) PML/RARA</td>
<td>• IDH2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• FLT3</td>
<td>• JAK2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conventional chromosome</td>
<td>• KIT (exon 17)</td>
<td>• KRAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>analysis</td>
<td>• t(15;17) PML/RARA</td>
<td>• NPM1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – PML/RARA t(15;17)</td>
<td>• NRAS</td>
<td>• TET2</td>
</tr>
<tr>
<td>APL</td>
<td></td>
<td></td>
<td></td>
<td>• TP53</td>
</tr>
<tr>
<td>APL –</td>
<td></td>
<td></td>
<td></td>
<td>• U2AF1</td>
</tr>
<tr>
<td>Peripheral</td>
<td></td>
<td></td>
<td></td>
<td>• ZRSR2</td>
</tr>
<tr>
<td>Blood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conventional chromosome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplastic</td>
<td></td>
<td>analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td>• FISH – PML/RARA t(15;17)</td>
<td>• Acute Leukemia Screen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• CD56 Quantitation</td>
<td>• TCRB clonality (TCR-BETA chain gene)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• t(15;17) PML/RARA</td>
<td>• TCRG clonality (TCR-gamma chain gene)</td>
</tr>
<tr>
<td>Burkitt</td>
<td></td>
<td>Conventional chromosome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td></td>
<td>analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH - MYC</td>
<td>• EBV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IGH clonality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CD4/#CD8 Ratio</td>
<td>• TP53</td>
<td></td>
</tr>
<tr>
<td>Burkitt</td>
<td>FISH - MYC</td>
<td>CD4/#CD8 Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td></td>
<td>• Conventional chromosome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with or</td>
<td></td>
<td>analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>without</td>
<td></td>
<td>• FISH – BCR/ABL1 t(9;22)</td>
<td>• CD4/#CD8 Ratio</td>
<td></td>
</tr>
<tr>
<td>Bone Marrow</td>
<td></td>
<td>FISH – CEBPA</td>
<td>• CEBPA</td>
<td>• aCGH panel (chr 5, 7, 8, 17, 20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FISH – CEBPA</td>
<td>• CEBPA</td>
<td>• ATM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FISH – MYC</td>
<td>• CD4/#CD8 Ratio</td>
<td>• BIRC3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CD4/#CD8 Ratio</td>
<td>• CEBPA</td>
<td>• BTK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CEBPA</td>
<td>• CEBPA</td>
<td>• IGH Clonality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CEBPA</td>
<td>• CEBPA</td>
<td></td>
</tr>
</tbody>
</table>

APL = acute promyelocytic leukemia
CLL = chronic lymphocytic leukemia

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>DIAGNOSIS</th>
<th>CYTOGENETICS</th>
<th>FLOW</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia – continued</td>
<td>CML – Bone Marrow</td>
<td>Conventional chromosome analysis</td>
<td>Acute Leukemia Screen</td>
<td>Major (p210; b2a2/e13a2, b3a2/e14a2) Minor (p190; e1a2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FISH – BCR/ABL1 t(9;22)</td>
<td></td>
<td>ABL1 gene mutation (kinase domain) qualitative</td>
</tr>
<tr>
<td></td>
<td>CML – Peripheral Blood</td>
<td>FISH – BCR/ABL1 t(9;22)</td>
<td>Acute Leukemia Screen</td>
<td>Major (p210; b2a2/e13a2, b3a2/e14a2) Minor (p190; e1a2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABL1 gene mutation (kinase domain) qualitative</td>
</tr>
<tr>
<td></td>
<td>CML – Blast Phase</td>
<td>Conventional chromosome analysis</td>
<td>Acute Leukemia Screen</td>
<td>Major (p210; b2a2/e13a2, b3a2/e14a2) Minor (p190; e1a2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABL1 gene mutation p.T315I quantitative</td>
</tr>
<tr>
<td></td>
<td>CMML</td>
<td>Conventional chromosome analysis</td>
<td>Acute Leukemia Screen</td>
<td>t(9;22) BCR/ABL1 Major (p210; b2a2/e13a2, b3a2/e14a2) Minor (p190; e1a2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KIT (exon 17)</td>
</tr>
<tr>
<td>Hairy Cell Leukemia</td>
<td>Conventional chromosome analysis</td>
<td>MRD</td>
<td></td>
<td>JAK2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NRAS</td>
</tr>
<tr>
<td></td>
<td>HES, Mastocytosis</td>
<td>Conventional chromosome analysis</td>
<td>T-Cell Lymphoma/Leukemia</td>
<td>IDH2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mastocytosis</td>
<td>KIT p.D816V for mast cell disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KRAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NRAS</td>
</tr>
<tr>
<td>MPN</td>
<td></td>
<td></td>
<td></td>
<td>TCRG clonality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABL1 kinase domain mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ABL1 p.T315I mutation (quantitative)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASXL1 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CALR mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CSF3R mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EZH2 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JAK2 exon 12 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JAK2 v617F mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KIT mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MPL mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TET2 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP53 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FIP1L1-PDGFR fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>t(9;22) BCR-ABL1 quantitative PCR</td>
</tr>
</tbody>
</table>

CML = chronic myeloid leukemia **HES** = hypereosinophilic syndrome **CMML** = chronic myelomonocytic leukemia **MPN** = myeloproliferative neoplasms
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>DIAGNOSIS</th>
<th>CYTOGENETICS</th>
<th>FLOW</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia – continued</td>
<td>MF - Peripheral Blood</td>
<td></td>
<td>CD34</td>
<td>(9,22) BCR/ABL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CALR</td>
</tr>
<tr>
<td></td>
<td>PV, ET, MF</td>
<td>Conventional chromosome analysis</td>
<td>Acute Leukemia screen</td>
<td>(9,22) BCR/ABL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASXL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CALR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DNMT3A</td>
</tr>
<tr>
<td></td>
<td>T Cell Disorders - Peripheral Blood</td>
<td>Conventional chromosome analysis</td>
<td>CD4/CD8 Ratio</td>
<td>(9,22) BCR/ABL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lymphocyte Subset Panel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T Cell Disorders</td>
<td>Conventional chromosome analysis</td>
<td>TCRB clonality</td>
<td>STAT3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T-Cell</td>
<td>STAT5B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NK-Cell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-Prolymphocytic Leukemia (T-PLL)</td>
<td>FISH - 14q32</td>
<td>TCRG clonality</td>
<td>IL2RG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JAK1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>JAK3</td>
</tr>
<tr>
<td></td>
<td>T-Large Granular Lymphocytic Leukemia (T-LGL)</td>
<td></td>
<td>STAT3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STAT5B</td>
</tr>
</tbody>
</table>

MF = Mycosis fungoides
PV = Polycythemia Vera
ET = Essential thrombocytopenia
<table>
<thead>
<tr>
<th>DISEASE SITE</th>
<th>DIAGNOSIS</th>
<th>CYTOGENETICS</th>
<th>FLOW CYTOMETRY</th>
<th>MOLECULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphoma</td>
<td>Burkitt Lymphoma</td>
<td>• Conventional chromosome analysis</td>
<td>B-Cell Lymphoma Panel</td>
<td>• Epstein-Barr Virus quantitative PCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH - MYC</td>
<td></td>
<td>• IGH clonality</td>
</tr>
<tr>
<td></td>
<td>Burkitt Lymphoma Peripheral Blood</td>
<td>FISH - MYC</td>
<td>CD4/CD8 Ratio</td>
<td>• TP53</td>
</tr>
<tr>
<td></td>
<td>Diffuse Large B-Cell Lymphoma</td>
<td>Conventional chromosome analysis</td>
<td>B-Cell Lymphoma Panel</td>
<td>• CD79A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – CCND1 MYEVOY</td>
<td></td>
<td>• CD79B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – MYC</td>
<td></td>
<td>• EZH2 (codon 646)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – TP53 CEP17</td>
<td></td>
<td>• MYD88 (codon 265)</td>
</tr>
<tr>
<td></td>
<td>Mantle Cell Lymphoma</td>
<td>Conventional chromosome analysis</td>
<td>B-Cell Lymphoma Panel</td>
<td>• BIRC3 – Exons 6-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – CCND1 MYEVOY</td>
<td></td>
<td>• BTK – Exons 8, 15, 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – MYC</td>
<td></td>
<td>• IGH Gene Rearrangement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FISH – TP53 CEP17</td>
<td></td>
<td>• IGH Somatic Hypermuation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NOTCH1 – Exons 26, 27, 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• TP53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• t(11;14) IGH-BCL1</td>
</tr>
<tr>
<td>Myeloma</td>
<td>Plasma Cell Myeloma</td>
<td>Conventional chromosome analysis</td>
<td>Myeloma Panel</td>
<td>• BRAF mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• FGFR3 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• KRAS mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• TP53</td>
</tr>
<tr>
<td></td>
<td>Waldenstrom’s Macroglobulinemia</td>
<td>Conventional chromosome analysis</td>
<td></td>
<td>• CXCR4 mutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• MYD88 (codon 265)</td>
</tr>
</tbody>
</table>
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS

NOTE: suggested readings represent the evidence used when the biomarker was first presented for approval

All Solid Tumor Types

Molecular: NTRK1, NTRK2, and NTRK3 Fusion Analysis

Immunohistochemistry: Microsatellite Instability (MSI) (MLH1, MSH2, MSH6, PMS2)

Continued on next page
SUGGESTED READINGS

NOTE: suggested readings represent the evidence used when the biomarker was first presented for approval

All Solid Tumor Types – continued

Immunohistochemistry: Microsatellite Instability (MSI) (MLH1, MSH2, MSH6, PMS2)

Brain/Neuro-Oncology

Diffuse Glioma

FISH/p19q:

Bouvier, C., et al. (2004). Deletions of chromosomes 1p and 19q are detectable on frozen smears of gliomas by FISH: usefulness for stereotactic biopsies. *Journal of Neuro-Oncology, 68*(2), 141-149

Immunohistochemistry/BRAF:

Immunohistochemistry/EGFR528:

SUGGESTED READINGS – continued

Brain/Neuro-Oncology – continued

Diffuse Glioma

Molecular/IDH1/IDH2:
Capper, D., Sahm, F., Hartmann, C., et al. (2010). Application of mutant IDH1 antibody to differentiate diffuse glioma from nonneoplastic central nervous system lesions and therapy-induced changes. *American Journal of Surgical Pathology, 34*(8), 1199-1204. doi: http://dx.doi.org/10.1097/PAS.0b013e3181e7740d.

Continued on next page
SUGGESTED READINGS – continued

Brain/Neuro-Oncology – continued

Diffuse Glioma

Molecular/IDH1/Multigene predictor:

Molecular/PIK3CA:

Immunohistochemistry/PTEN:

Molecular/CIMP:

Copyright 2020 The University of Texas MD Anderson Cancer Center

Continued on next page
SUGGESTED READINGS – continued

Low Grade Glioma

Molecular/BRAF:

Molecular/MGMT:

FISH/1p/19q:

SUGGESTED READINGS – continued

Breast

Immunohistochemistry/ER and Immunohistochemistry/PR:

Immunohistochemistry/Ki67:

Immunohistochemistry/HER2/NEU and Immunohistochemistry/FISH/HER2/NEU:

Continued on next page
SUGGESTED READINGS – continued

Breast - continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Molecular/ESR1:

Molecular/FGFR:

Molecular/MammaPrint:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Breast – continued

Molecular/Oncotype:

Molecular/PIK3CA:

Molecular/TP53:

Copyright 2020 The University of Texas MD Anderson Cancer Center

Continued on next page

Department of Clinical Effectiveness V5
Approved by the Executive Committee of the Medical Staff on 12/17/2019
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Endocrine

Adrenocortical Neoplasm

Immunohistochemistry/Ki67:

Anaplastic, Follicular, Papillary Thyroid Carcinoma

Molecular/BRAF:

Molecular/KRAS HRAS NRAS:
CNS SUPERSEDED Local Coverage Determination (LLCD): https://www.cms.gov/medicare-coverage-database/details/lcd-details.aspx?LCDId=35396&ContrId=338&ver=20&ContrVer=1&Keyword=biomarker&KeywordSearchType=Or&PolicyType=Both&ArticleType=SAD%7cEd&Cntrctr=338*1&Date=&KeyWordLookUp=Doc&SearchType=Advanced&CoverageSelection = Both&kq=true&bc=IAAAABAAAAAAA%3d%3d&

Continued on next page
Molecular/BRAF:
CMS SUPERSEDED Local Coverage Determination (LLCD): https://www.cms.gov/medicare-coverage-database/details/lcd-details.aspx?LCDId=35396&ContrId=338&ver=20&ContrVer=11&Keyword=biomarker&KeywordSearchType=Or&PolicyType=Both&ArticleType=SAD%7cEd&Cntrctr=3381&Date=&KeyWordLookUp=Doc&SearchType=Advanced&CoverageSelection=Both&kq=true&bc=1AAAAABAAAAA%3d%3d&

Molecular/KRAS HRAS NRAS:
CMS SUPERSEDED Local Coverage Determination (LLCD): https://www.cms.gov/medicare-coverage-database/details/lcd-details.aspx?LCDId=35396&ContrId=338&ver=20&ContrVer=11&Keyword=biomarker&KeywordSearchType=Or&PolicyType=Both&ArticleType=SAD%7cEd&Cntrctr=3381&Date=&KeyWordLookUp=Doc&SearchType=Advanced&CoverageSelection=Both&kq=true&bc=1AAAAABAAAAA%3d%3d&

Molecular/PIK3CA:

Note: suggested readings represent the evidence used when the biomarker was first presented for approval.

SUGGESTED READINGS – continued
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Endocrine

Anaplastic, Follicular, Papillary Thyroid Carcinoma

Immunohistochemistry/PTEN:

Medullary Thyroid Carcinoma

Molecular/RET mutation status:

Molecular/HRAS KRAS & NRAS mutation status:

Sherman et al. (2013). Demonstrating patients with somatic RAS or RET mutation in MTC have better response to TKI therapy with cabozantinib than those lacking mutations. ASCO presentation #6000.

FISH CDKN2C:

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Endocrine – continued

Anaplastic, Follicular, Papillary Thyroid Carcinoma

FISH CDKN2C - continued:

Parathyroid Carcinoma

Immunohistochemistry/Ki67:

Pituitary Neoplasm

Immunohistochemistry/Ki67:

Immunohistochemistry/p53:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Gastrointestinal

Stomach and Esophagogastric Junction Adenocarcinoma

Immunohistochemistry/HER2/neu and FISH/HER2/neu:

Small Intestinal Adenocarcinoma

Immunohistochemistry/DNA mismatch repair enzymes and Molecular/MSI PCR, MLH1 promoter methylation, KRAS, BRAF:
Small bowel and appendiceal adenocarcinoma may be treated with systemic chemotherapy according to the NCCN Guidelines for Colon Cancer. *NCCN Guidelines*, Version 3.2013, Colon Cancer, Page COL-1.

Colorectal Adenocarcinoma

Immunohistochemistry/IHC mmr enzymes and Colorectal Adenocarcinoma/Molecular/MSI PCR:

The panel recommends that MMR protein testing be performed for all patients younger than 50 years old with colon cancer, based on an increased likelihood of Lynch syndrome in this population. MMR testing should also be considered for all patients with stage II disease, because stage II MSH-H patients may have a good prognosis and do not benefit from 5-FU adjuvant therapy. *NCCN Guidelines*, Version 3.2013, Colon Cancer, Page COL-A 4 of 5.

Molecular/BRAF:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Gastrointestinal - continued

Colorectal Adenocarcinoma - continued

Molecular/KRAS:

Carcinoma of the Anal Canal

Immunohistochemistry/p16:

Immunohistochemistry/HPV:

Neuroendocrine

Immunohistochemistry/CDX2:

Copyright 2020 The University of Texas MD Anderson Cancer Center

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Gastrointestinal - continued

Neuroendocrine - continued

Immunohistochemistry/TTF:

Immunohistochemistry/Ki67:

Immunohistochemistry/DAXX, ATRX:

DAXX, ATRX, MEN1, PTEN, PIK3CA, TSC2:

Continued on next page
SUGGESTED READINGS – continued

Gastrointestinal – continued

Neuroendocrine – continued

Immunohistochemistry/MEN1:

MGMT Methylation:

Molecular/18Q LOH:

Molecular/PTEN, TSC2:

Pseudomyxoma Peritonei

Molecular/IKRAS:

Genitourinary/Urology

Hepatic Adenoma

Molecular/Beta Catenin:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Genitourinary/Urology - continued

Prostate

Immunohistochemistry/PSA:

Immunohistochemistry/PAP:

Immunohistochemistry/CgA:

Molecular/RB1, TP53, PTEN, AR:

Molecular/RB1, TP53, AR:

Molecular/RB1, TP53:

Use of platinum-based chemotherapy in aggressive variant prostate carcinomas:
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Genitourinary/Urology - continued

Testicular, Suspected Testicular

Immunohistochemistry/bHCG and AFP:

Upper Urinary Tract and Renal Pelvis Urothelial Carcinoma

FISH/HER2/neu:

Immunohistochemistry and Molecular/MSI panel and MLH1 promoter methylation assay and PCR based MSI testing:
DOI - 10.1097/01.MP.0000024263.25043.0C

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS – continued
Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Gynecology

Ovarian and Uterine

FISH/Her2/neu:
AID - 10.1111/j.1525-1438.2007.00946.x [doi]

Continued on next page
Gynecology – continued

Ovarian and Uterine - continued

Immunohistochemistry/Her2/neu:

Note: suggested readings represent the evidence used when the biomarker was first presented for approval.
Gynecology - continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Ovarian and Uterine - continued

Immunohistochemistry/HPV:

Immunohistochemistry/MSI:
Murphy, M. A., & Wentzensen, N. (2011). Frequency of mismatch repair deficiency in ovarian cancer: a systematic review This article is a US Government work and, as such, is in the public domain of the United States of America. International Journal of Cancer, 129(8), 1914-1922. doi: http://dx.doi.org/10.1002/ijc.25835
Gynecology - continued

Ovarian and Uterine - continued

Immunohistochemistry/PTEN:

SUGGESTED READINGS – continued
Note: suggested readings represent the evidence used when the biomarker was first presented for approval
SUGGESTED READINGS – continued

Gynecology - continued

Ovarian and Uterine - continued

Molecular/BRAF:

Continued on next page
SUGGESTED READINGS – continued
Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Gynecology - continued

Ovarian and Uterine - continued

Molecular/KRAS:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Gynecology - continued

Ovarian and Uterine - continued

Molecular/MLH1 promoter methylation:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Gynecology - continued

Ovarian and Uterine - continued

Molecular/MSI PCR:

Continued on next page
Gynecology - continued

Ovarian and Uterine - continued

Molecular/P3K AKT:

SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval
Gynecology - continued

Ovarian and Uterine - continued

Molecular/PTEN:

SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Head and Neck

Oropharynx/Nasopharynx/Oral Cavity

HPV and P16:

Nasopharynx Cancer and Salivary Cancer

EBV and erB-2 and HER2/neu:

Salivary Cancer

c-kit and EGFR and Androgen Receptor:

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Liquid Biopsies

Breast: AKT1, BRCA1, BRCA2, ERBB2, ESR1, PIK3CA

AKT1

BRCA1/BRCA2

ERBB2

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Liquid Biopsies – continued

Breast: AKT1, BRCA1, BRCA2, ERBB2, ESR1, PIK3CA – continued

ESR1

PIK3CA

Continued on next page
Liquid Biopsies – continued
Endocrine:

Anaplastic Thyroid: BRAF, EML4/ALK, HRAS, KRAS, MTOR, NRAS, NTRK1, RET
Medullary Thyroid: RET
Papillary Thyroid: BRAF

ALK fusions, NTRK1 fusions, RET fusions

BRAF
Atezolizumab Combinations With Chemotherapy for Anaplastic and Poorly Differentiated Thyroid Carcinomas, Trial NCT03181100 https://clinicaltrials.gov/ct2/show/NCT03181100

BRAF, HRAS, KRAS, MTOR, NRAS

SUGGESTED READINGS – continued
Note: suggested readings represent the evidence used when the biomarker was first presented for approval
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Liquid Biopsies – continued

Endocrine, Thyroid – continued

BRAF, HRAS, KRAS, NRAS

Iyer, P., Cote, G. J., Dadu, R., Ferrarotto, R., Busaidy, N., Hofmann, M., … Cabanillas, M. E. Circulating BRAF V600E Cell-Free DNA Detected by Droplet-Digital PCR (ddPCR) as a Biomarker in the Management of Anaplastic Thyroid Carcinoma (ATC) Patients. 87th Annual Meeting of the American Thyroid Association, Victoria, BC, 10/2017

A phase II Trial of CUDC-907 Treatment in People with Metastatic and Locally Advanced Thyroid Cancer, Trial NCT03002623 https://clinicaltrials.gov/ct2/show/NCT03002623.

MTOR

NTRK1

RAS

SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Liquid Biopsies – continued

Gastrointestinal: Colorectal adenocarcinoma, Small Intestinal Adenocarcinoma, Appendiceal Adenocarcinoma, Pseudomyosoma Pentonei (PMP)

APC, BRAF, KRAS, NRAS, PIC3CA, TP53

SUGGESTED READINGS — continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Liquid Biopsies – continued

Genitourinary

Prostate

ATM, BRCA2

ATM, BRCA2, PTEN, RB1, TP53

ATM, BRCA2, TP53

BRCA2

PTEN, RB1, TP53

Continued on next page
SUGGESTED READINGS – continued

Liquid Biopsies – continued

Genitourinary – continued

Urothelial

ERBB2

FGFR3

Melanoma: BRAF, GNA11, GNAQ, KIT, NRAS

Thoracic, Non-Small Cell Lung: BRAF, EGFR, EML4/ALK, ERBB2, MET, RET, ROS1

Continued on next page
SUGGESTED READINGS – continued

Leukemia

Cytogenetics/Multiplex PCR (all subtypes):

Molecular-Genetics (Overview):

Molecular-Genetics (Philadelphia negative - all types):

Molecular-Genetics (Philadelphia negative B-lineage):

Burkitt subtype (c-myc):

Philadelphia positive subtype (BCR-ABL1) - Overlap CML:

Philadelphia positive subtype (Mutations) - Overlap CML:

Note: suggested readings represent the evidence used when the biomarker was first presented for approval
SUGGESTED READINGS – continued

Leukemia – continued

ALL - continued

IgH/TCR (all subtypes):

TP53 Mutations:
Chiaretti S, Brugnoletti F, Tavolaro, S et al. TP53 mutations are frequent in adult acute lymphoblastic leukemia cases negative for recurrent fusion genes and correlate with poor response to induction therapy. Haematologica 2013 May;98(5):e59-61

NOTCH1 and FBXW7:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Leukemia – continued

AML/MDS

Molecular CD33:

Molecular RUNX1:

Molecular SF3B1:
SUGGESTED READINGS – continued

Leukemia – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

AML/MDS

Molecular SF3B1, SRSF2, U2AF1, ZRSR2:

AML/MDS/CMML/Aplastic Anemia

Cytogenetics:

Molecular/DNMT3A:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Leukemia – continued

AML/MDS/CMML/Aplastic Anemia - continued

Molecular/FLT3:

Continued on next page
SUGGESTED READINGS – continued

Leukemia – continued

AML/MDS/CMML/Aplastic Anemia – continued

CEBPA:

IDH1/IDH2:

JAK2/MPL:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Leukemia – continued

AML/MDS/CMML/Aplastic Anemia - continued

KIT:

NPM1:

RAS:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Leukemia – continued

Additional CMML:

APL

Cytogenetics/FISH:

FLT3:

Continued on next page
Leukemia – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

APL - continued

IDH1/IDH2:

KIT:

NPM1:

RAS:

SUGGESTED READINGS – continued

Leukemia – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval.

CLL Blood or bone marrow can be used for any of these tests. There are leukemia cells sampled by blood draw or bone marrow aspirate

Metaphase karyotype:

FISH for 11q del, 17p del, +12, 13q del:

IGHV mutation status:

Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia Blood. 1999 Sep 15;94(6):1848-54. PubMed PMID: 10477713

TP53 sequencing and ATM sequencing, TP53, BIRC3, BTK, NOTCH1, PLCG2, SF3B1:

Continued on next page
SUGGESTED READINGS – continued

Leukemia – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

CLL - continued

TP53 sequencing and ATM sequencing, TP53, BIRC3, BTK, NOTCH1, PLCG2, SF3B1:

Continued on next page
SUGGESTED READINGS – continued

Leukemia – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

CLL

TP53 sequencing and ATM sequencing, TP53, BIRC3, BTK, NOTCH1, PLCG2, SF3B1:

CML

Hairy Cell Leukemia

HES, Mastocytosis, MF, PV, ET

Note

Continued on next page
SUGGESTED READINGS – continued

Leukemia – continued

T-Cell Disorders

TCRB clonality, TCRG clonality, FISH - 14q32:

Large Granular Lymphocytic Leukemia (T-LGL)

Somatic STAT3:

Prolymphocytic Leukemia (T-PLL)

JAK1, JAK3, STAT5B, IL2RG:

Lymphoma

Diffuse Large B-Cell Lymphoma

SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Lymphoma – continued

Mantle Cell

MRD, t(11;14) IGH-BCL1:

MYC (FISH):

NOTCH1:

NOTCH2, BTK, BIRC3:

Somatic Hypermutation:

TP53:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Melanoma

Continued on next page
SUGGESTED READINGS – continued

Melanoma - continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Acral, Mucosal, Uveal, and Unknown Primary Melanoma

Immunohistochemistry, PTEN:

Myeloma

Plasma Cell

Sarcoma

Desmoid fibromatosis

Molecular/CTNNBI:

Gastrointestinal stromal tumor

Molecular/CKIT and PDGFR:

Neuroblastoma

FISH/NMYC:

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Sarcoma - continued

Soft Tissue and Primary Bone:

Immunohistochemistry/ NY-ESO-1:

Continued on next page

Department of Clinical Effectiveness V5

Approved by the Executive Committee of the Medical Staff on 12/17/2019
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Soft Tissue and Primary Bone - continued:

Immunohistochemistry/NY-ESO-1 continued:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Sarcoma - continued

Soft Tissue and Primary Bone - continued:

Immunohistochemistry/NY-ESO-1 continued:

Continued on next page
SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Thoracic – continued

Non Small Cell Lung Cancer

Immunohistochemistry/PD-L1 22C3:

FISH:

FISH/Non Small Cell Lung Cancer/BRAF:

Continued on next page
Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Thoracic – continued

Non Small Cell Lung Cancer – continued

Molecular/BRAF V600E:

Molecular/EGFR:
Biomarkers - MD Anderson Approved

SUGGESTED READINGS – continued

Note: suggested readings represent the evidence used when the biomarker was first presented for approval

Thoracic – continued

Non Small Cell Lung Cancer - continued

Molecular/ELM4-ALK:

Molecular/KRAS:

Biomarkers - MD Anderson Approved

These guidelines have been specifically developed for MD Anderson and are not intended to replace the independent medical or professional judgment of physicians or other health care providers.

DEVELOPMENT CREDITS

This practice consensus document was reviewed in conjunction with disease site representatives listed below. It was approved by the Molecular Testing Evaluation Committee (MTEC) at The University of Texas MD Anderson Cancer Center. The information is updated at least every two years or as new evidence emerges and is presented to MTEC for review and approval.

MTEC Members, 2019:

- Aman U. Buzdar, MD
- Stanley R. Hamilton, MD
- Yiwen Chen, PhD
- John F. de Groot, MD
- Robert F. Gagel, MD
- Ernest Hawk, MD
- Douglas J. Harrison, MD
- Dao B. Le, PharmD
- Steven H. Lin, MD, PhD
- Raja Luthra, PhD
- MTEC Co-Chair, Clinical Research
- MTEC Co-Chair, Pathology/Laboratory Medicine
- Biinformatics and Computational Biology
- Neuro-Oncology
- Endocrine Neoplasia and HD
- Pediatrics
- Nuclear Medicine Radiopharmacy
- Radiation Oncology
- Hematopathology
- Funda Meric-Bernstam, MD
- L. Jeffrey Medeiros, MD
- Keyur P. Patel, MD, PhD
- Victor Prieto, MD, PhD
- Ellen J. Schlette, MD
- Kenna R. Shaw, PhD
- Steven I. Sherman, MD
- Shital Vachhani, MD
- George Wilding, MD
- Ignacio I. Wistuba, MD
- Investigational Cancer Therapeutics
- Hematopathology
- Hematopathology
- Pathology
- Hematopathology
- Institute for Personalized Cancer Therapy
- Endocrine, Neoplasia and HD
- Anesthesiology & Peri-operative Medicine
- Clinical and Intr Research
- Translational Molecular Pathology

Disease Site Representatives:

- Brain – W.K. Alfred Yung, MD
- Breast – Debu Tripathy, MD
- Endocrine – Steven I. Sherman, MD
- GI – Stanley R. Hamilton, MD
- Scott Kopetz, MD
- GU – Suresha Matin, MD
- Neema Navai, MD
- Gyn – Anil K. Sood, MD
- Head & Neck – Rui Jennifer Wang, MD
- Leukemia – William G. Wierda, MD
- Lymphoma – Jason R. Westin, MD
- Melanoma – Michael A. Davies, MD
- Sarcoma – Douglas J. Harrison, MD
- Thoracic – Bonnie S. Glisson, MD
- Unknown Primary – Gauri R. Varadhachary, MD

Pathology:

- Cytogenetics/FISH: Guilin Tang, MD, PhD (Section Chief)
- Flow Cytometry: Jeffrey L. Jorgensen, MD, PhD (Section Chief)
- Immunohistochemistry: Wei-Lien Wang, MD (Co-Medical Director)
- Molecular Diagnostics: L. Jeffrey Medeiros, MD (Section Chief)
- Melanoma – Michael A. Davies, MD
- Sarcoma – Douglas J. Harrison, MD
- Thoracic – Bonnie S. Glisson, MD
- Unknown Primary – Gauri R. Varadhachary, MD
- Melissa Robinson, CG, ASCP (Laboratory Manager)
- Soheila Vadie, SCYM, ASCP (Laboratory Manager)
- Joseph Khoury, MD (Co-Medical Director)
- Keyur P. Patel, MD, PhD (Medical Director)
- Janet Quinones, HT, ASCP, (Laboratory Manager)
- Bedia A. Barkoh, MB, ASCP, (Laboratory Manager)

Clinical Effectiveness Development Team:

- Olga N. Fleckenstein
- Pauline Koinis, BSMT

Copyright 2020 The University of Texas MD Anderson Cancer Center

Approved by the Executive Committee of the Medical Staff on 12/17/2019