Solitary and Extramedullary Plasmacytoma

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

Note: Consider Clinical Trials as treatment options for eligible patients.

INITIAL EVALUATION

- History and physical
- CBC with differential, BUN, creatinine, electrolytes, albumin, LDH, calcium, beta-2-microglobulin, serum quantitative immunoglobulins, serum protein electrophoresis (SPEP), serum immunofixation (SIFE), and serum free light chains (sFLC) including involved/uninvolved sFLC ratio
- 24 hour urine protein electrophoresis (UPEP) and urine immunofixation (UIFE)
- Bone marrow biopsy and aspirate with flow cytometry
- PET/CT of whole body or MRI of whole body
- If PET/CT of whole body or MRI of whole body is unavailable, then perform skeletal survey and MRI of the cervical, thoracic, lumbar and sacral spine. Consider CT or MRI of the affected area.
- In select settings, other imaging studies may be considered, such as ultrasound for superficial masses
- Lifestyle risk assessment

TREATMENT

Patient’s initial evaluation findings meet criteria for multiple myeloma treatment? (See below)

Yes
- Treat as multiple myeloma (see Multiple Myeloma Algorithm)

No
- Treat as plasmacytoma, see Page 2

Criteria for multiple myeloma treatment:

- Anemia, hypercalcemia, renal failure due to multiple myeloma and/or
- Bony lytic lesions due to multiple myeloma in a skeletal survey and/or
 MRI of whole body and/or PET/CT of whole body and/or
- sFLC involved/uninvolved ratio greater than or equal to 100 and/or
- Greater than one focal lesions on MRI (each focal lesion must be 5 mm or more in size) and/or
- Percentage of clonal plasma cells is greater than or equal to 60% in the core biopsy by CD138 immunohistochemistry

Note: Treatment may be considered if percentage of clonal plasma cells is greater than or equal to 10% in the core biopsy by CD138 immunohistochemistry

1 See Physical Activity, Nutrition, and Tobacco Cessation algorithms; ongoing reassessment of lifestyle risks should be a part of routine clinical practice
Solitary and Extramedullary Plasmacytoma

CLINICAL PRESENTATION

Solitary plasmacytoma of bone (SPB)

Extramedullary plasmacytoma (EMP)

PRIMARY TREATMENT

Treat with involved site radiation therapy (ISRT) to a total dose of at least 40 Gy (regardless of site)¹

FOLLOW-UP SURVEILLANCE

Evaluate response every 3 months for the first 2 years, then every 6-12 months thereafter:
- CBC with differential, BUN, creatinine, electrolytes, albumin, LDH, calcium, beta-2-microglobulin, serum quantitative immunoglobulins, SPEP, SIFE, and sFLC
- 24 hour urine for total protein, UPEP, and UIFE
- Consider bone marrow biopsy and aspirate, if clinically indicated
- MRI and/or PET/CT at 3 months after completion of ISRT to assess treatment response. Consider skeletal survey and/or MRI and/or CT and/or PET/CT every 6-12 months, if clinically indicated.

Complete response
- Complete disappearance of paraprotein in serum or urine by immunofixation and normalization of sFLC
- No new bone lesions or other features of multiple myeloma (see Multiple Myeloma Algorithm)

Re-evaluate as indicated

Progressive disease
- Restage with myeloma workup
- See Multiple Myeloma Algorithm

¹ Historically, the recommended dose has been at least 40 Gy. More recent data suggests that lower doses may be sufficient. Refer to suggested readings for data regarding ISRT dose.

Note: Consider Clinical Trials as treatment options for eligible patients.
SUGGESTED READINGS

Solitary and Extramedullary Plasmacytoma

This practice algorithm has been specifically developed for MD Anderson using a multidisciplinary approach and taking into consideration circumstances particular to MD Anderson, including the following: MD Anderson’s specific patient population; MD Anderson’s services and structure; and MD Anderson’s clinical information. Moreover, this algorithm is not intended to replace the independent medical or professional judgment of physicians or other health care providers. This algorithm should not be used to treat pregnant women.

DEVELOPMENT CREDITS

This practice algorithm is based on majority expert opinion of the Myeloma Center Faculty at the University of Texas MD Anderson Cancer Center. It was developed using a multidisciplinary approach that included input from the following:

Bouthaina Shbib Dabaja, MD (Radiation Oncology)
Wendy Garcia, BS*
Jillian R. Gunther, MD, PhD (Radiation Oncology)
Elisabet E. Manasanch, MD (Lymphoma/Myeloma)*
Sarah Milgrom, MD (Radiation Oncology)
Amy Pai, PharmD*
Chelsea Pinnix, MD, PhD (Radiation Oncology)
Donna M. Weber, MD (Lymphoma/Myeloma)

* Core Development Team Leads
* Clinical Effectiveness Development Team

© 2018 The University of Texas MD Anderson Cancer Center

Department of Clinical Effectiveness V4
Approved by the Executive Committee of the Medical Staff on 05/29/2018