QEP Steering Committee
March 6, 2019
Steering Committee

AGENDA
DATE: JAN 16, 2019 TIME 11:30 – 1:30 LOCATION: SHP DEAN’S CONFERENCE ROOM

MEETING CALLED BY: Dr. David Ford
TYPE OF MEETING: Steering Committee
NOTE TAKER: Joanne Thomas

ATTENDEES
☐ Chair Dr. David Ford
☐ Mark Bailey
☐ Shaun Caldwell
☐ Dr. Mahsa Dehghanpour
☐ Dr. Jamie Baker
☐ Dr. Jun Gu
☐ Dr. Brandy Greenhill
☐ Dr. Peter Hu
☐ Dr. William Undie
☐ Clara Fowler
☐ Dr. Dyaz Godfrey
☐ Helene Phu
☐ Melissa Robinson
☐ Mayank Amin
☐ Catherine Evans
☐ Dr. Rey Trevino
☐ Aziz Benamar
☐ Laurissa Gann

Agenda topics

5 MINUTES
APPROVAL MEETING MINUTES
DR. DAVID FORD

MOTION:
Motion by:
Shaun Caldwell
Seconded by:
Helene Phu

TO APPROVE THE MEETING MINUTES

10 MINUTES
QEP TOPIC
DR. DAVID FORD

DISCUSSION

- Dr. Ford discussed the focus today was to review where we’ve been, where we started out by looking at criterion and requirements for effective QEP. Looked at some of the QEPs that are currently out there, what are the trends, and what is happening.
- Left last meeting with understanding that this meeting will focus on next stage of QEP development process which is reviewing our institutional effectiveness data. The majority of today’s agenda will be focused on that and presentations from program directors. We will also have opportunity to begin conversations and start facilitated process to begin targeting our QEP topic.
- Introduction of new committee members: Mena El Sharkawi, and Laurissa Gann
- Mena, who is the program director for publications for division of Education and Training, introduced herself and has communicated her support and help with communication plan for SHP program and staff.
- Dr. Ford and Mena will be working this spring to put together a communication plan which will we hear more about during next committee meeting on March 6th. In the May meeting, a formal plan will be presented.
- Dr. Ford stated that every December SACS has an annual conference which gives the opportunity to learn about any new news, updates and changes.
- Three primary changes:
 1. Emphasis now will be on student success. Need to think about activities that more focused on student’s success and measuring the impact of those activities. Last time the project was focused on critical thinking, creating lesson plans, observing teaching, teacher & learning environment activities which was encouraged at the time.
 2. They want clearer picture on how QEP emerges from a data rich environment. We have lots of information from our programs and have used that and have it here today. In addition, they want to see student learning and how it was being impacted. Need to make sure by this document that we show clear connection between how our QEP topic emerges and data we used to make that connection. Each member will participate in an activity during the meeting. The activity form consists of one question. There are a total of 3 various questions chosen at random for each
committee member to fill out and submit at the end of the meeting. The 3 questions were:
A) What does the data tell us about SHP students?
B) What does the data tell us about SHP programs?
C) What themes/skills emerge from SHP institutional effectiveness data that support a direction for the QEP?

It will help to put those documents and relics together so when site visitors come we can clearly show the connection between how we process these data and how we evaluated it and how our QEP.

3. The next change becomes more important in the fall when we talk about implementation planning process and specifics. In the past, they asked QEP to demonstrate capability of an institution to have it. Example, MDA has all these resources and people so clearly we are capable of doing a good QEP. That was ok in some form last time but now they want to know more specifically what you are using and facility availability for training. They also want to know FTEs, who is supporting it, how much funding is available and what it will be used for. Dr. Hu asked how we can put a budget together for QEP and some things we want to consider. Dr. Ford recommended budget can remain part of SHP but have it as a sub-budget. Need to have a QEP presence on the budget form.

20 MINUTES

STUDENT SURVEY

DR. REY TREVINO

• Importance to hear our students' voices. What we are doing is to hear from them. Dr. Trevino has been working this past month and a half creating a student survey. Results will be given in March session.
• Dr. Trevino mentioned that from last meeting Dr. Ford presented about something that University of Alabama had done for their QEP survey. We have the actual survey which looks similar to what we created but used it as our starting point. Then Dr. Trevino got ideas of what teamwork means to us and what collaboration means to our students both in and out of our classroom. He also used search tool from research medical library website to find other articles and surveys to see if there are other places that have done something similar that we can academically focus on. Example, exploring differences in student's perception of teamwork. He took some ideas from other surveys that were more relevant to teamwork and collaboration. Survey is to see how we are doing in the classroom and how we can do better in the future to better prepare students for their professional career.
• Survey started Jan 7th gave students a week. 40 students started survey. As of Jan 16, there is a 10% student response rate which is good. Would like more in order to get richer data. He can still schedule reminders for students to complete survey. Hoping for higher percentage. Qualtrix will remind students that have not completed survey to do the survey. We can use a lot of Qualtrix's data which is easier than using SAS's for analysis. Survey deadline is 2 weeks. Discussed options on how to increase student participation in survey such as lotto/drawings, prizes, gift cards, metro cards or a pizza party for the program that has the highest number of student participation but to justify funding a member of the committee must be present. We have limited funds for gift cards but can explore other options discussed to fit within the budget.
• Dr. Godfrey had asked if we can add additional questions to the survey for what she is doing such as if the student is first generation college students. She said majority students in her past were first generation college students. She said there is a mandate from the government for these students to identify and support and have activities to support their success.
• Helene Phu suggested to add questions to get feedback to see how well students have progressed that are 1st year students compared to 5th year students to see their views. Survey includes questions that incorporate this. Possibly add additional questions to survey to see if there is a difference in student learning between a 2 year community college student and a 4 year transfer student.

10 MINUTES

PROGRAM OVERVIEW OF CLINICAL LABORATORY SCIENCE

DR. BRANDY GREENHILL

• BS program in Clinical Laboratory Sciences
• Accrediting agency is NAACLS
• 2018-2019 Student enrollment: 27 students (11 juniors/16 seniors)
• Data reviewed: Program Self Study, QP 2010 Program Summary Report, Certification Exam Results, Employer Survey, Student Course Survey, Curriculum Committee Meeting Minutes, and Student Learning Outcome.
• CLS curriculum committee has been intertwined with advisory committee
• Current student strengths are strong technical skills and individual BOC scores are above average compared to national average.
• Current program strengths successful pass rate (BOC report), strong job placement rate, high graduation and low attrition rate.
• Areas targeted for future program development are faculty development, increase in molecular application, and need for additional clinical sites to maintain presence.
• The QEP project that would benefit our students is inter-professional education.
• SLO for program based on our competency checklist. Detailed information of 5 outcomes was provided in binder to each attendee.

5 MINUTES

OPEN DISCUSSION

DISCUSSION

• Competition issues with other programs to find additional clinical sites.
• To accommodate challenge, some clinics are done in the summer.
PROGRAM OVERVIEW OF CYTOGENETIC TECHNOLOGY

Discussion
- BS program in Cytogenetic Technology
- Accrediting agency is NAACLS
- Data reviewed: Program Self Study, QP 2010 Program Summary Report, Certification Exam Results, Employer Survey, Student Course Survey, Curriculum Committee Meeting Minutes, and Student Learning Outcome.
- **Current student strengths are:**
 - Highest score record keeper for ASCP-BOC exam in Cytogenetics
 - Diverse student groups each year
 - High competence in professional skills.
- **Current program strengths are:**
 - Significant higher average ASCP_ BOC exam score compared to national mean each year
 - Well beyond NAACLS required outcome measurement benchmark.
 - Resources to teach most advanced techniques in the profession.
 - Quality of the program faculty
 - Online track with concentrated in-person lab.
 - Training on clinical test validations and research methods.
 - Areas targeted for future program development are faculty development, increase in molecular application, and need for additional clinical sites to maintain presence.
 - The QEP project that would benefit our students is inter-professional education.
 - SLO for program based on our competency checklist. Detailed information of 5 outcomes was provided in binder to each attendee.

Areas targeted for future program development:
- Looking for interpersonal communication and faculty development
- Identify candidates to take over in 10 years to think about expanding program
- Inter-professional Education (IPE)
- Online track expansion
- Faculty development
- Clinical site expansion (50% of students rotate outside of Texas). Feedback is given from mentors on how they did professionally and personal skills.
- Continue upgrade of old imaging systems for teaching
- Graduate degree track (masters of science in cytogenetics)
- QEP project that would benefit students is competency-based education
- SLO for program based on our competency checklist. Detailed information of 5 outcomes was provided in binder to each attendee.

PROGRAM OVERVIEW OF DIAGNOSTIC IMAGING

Discussion
- BS program in Diagnostic Imaging
- Accrediting agency is JRCERT
- DI comprised of Radiography, Computed Tomography, MRI, Sonography, and MS program in Radiologic Sciences (focus more on research not clinical).
- Masters program is focused more on research not clinical. We utilize activities to use critical thinking skills. Each student given a internship and we ask each mentor to evaluate them. Based on student's leadership skills, based on their rotation in clinical area we get feedback from their mentors and also ask our students. All the students did quite well. Students assigned a case study to evaluate how they did in ethical and legal standards.
- Data reviewed: Program Self Study, Certification Exam Results, Employer Survey, Student Course Survey.
- **Current student strengths are:**
 - Proficient in capturing right images
 - Manipulating the C-Aim Machine used in surgery. Intimidation machine but it helps train students
 - Familiarity with APA style for students to write well. Teaching students mechanics of writing.
 - We provide opportunity for broader skills besides technical such as professional behavior.
- **Current program strengths are:**
 - High graduation rate
 - High job placement rate
 - Admissions: We have a large pool of applicants
 - Faculty to student ratio very low which students enjoy that benefit.
- **Areas targeted for future program development:**
 - Continue to encourage students in writing and presenting in national conferences. Plan to compete in
house with all 6 programs to make students feel comfortable.
- Currently have 20 students in master’s program focusing on leadership.
- We have masters and advanced programs in education and management. we have hybrid programs (not totally on-line) also have face-to-face capability and Skype.
- QEP project that would benefit students is interprofessional Education. The IP is helping a lot.
- SLO for program based on our competency checklist. Detailed information of 5 outcomes for each area of DI was provided in binder to each attendee.

10 MINUTES

PROGRAM OVERVIEW OF HISTOTECHNOLOGY

MARK BAILEY

- Testing of tissue samples. Students working with sharp blades and are monitored very well.
- Program has been with MDA since 1949. From 1949-2009 was a certificate program. From 2010 to now we were approved for a Bachelors of Science and have done very well.
- Accrediting agency is NAACLS
- Student enrollment for 2018-2019 total of 32 students (16 juniors/16 seniors)
- Instruments used to do our program review is Program Self Study, QEP 2010 Program Summary report, Certification Exam results, Employer survey, Student Course study, and Curriculum Committee meeting minutes. Also have an advisory committee that meets once a year.

Current student strengths:
- Strong biological science background. Some come in as 2 + 2 students coming from community colleges.
- Have a pretty strong pre-requisite that they have to meet before we consider them for admissions.
- ASCDP BOC individual scores 50-70 points above national average.
- Excellent didactic application and lab skills. They are in lab 3 days a week for 6-7 hours a day and in lab for 30 weeks before they are sent off to 12 week internship during the summer.

Current Program strengths:
- 3 year average 90% pass rate on first attempt on ASCDP BOC HTL exam
- Job placement rates 3 year average 80% and other 20% students go to grad programs or pathology assistant program.
- 1:9 faculty to student ratio which gives us opportunity to work one on one with students

Future Program Development:
- In process of developing a high competency testing lab in line with mission of MDA in delivering personalized care medicine.
- Looking to develop a dual degree career ladder program
- IPE with pathologists’ Assistant program
- QEP project that would benefit students are interprofessional education. Working with Yale University’s pathology program
- 5 areas of SOL that are concentrated on are professionalism (we have 6 courses), competency checklist (85% success in first round), strong emphasis in lab safety, Microtomy (cut sections for slides to stain for pathologist), special stains competencies (simulate where pathologists come to lab and order special stain test that needs to be done quickly), and comprehensive lab practicum where end of Spring semester given 10 specimens to test to be ready for their 12 week internship.

10 MINUTES

PROGRAM OVERVIEW OF MEDICAL DOSIMETRY

DR. MAHSA DEHGANPOUR

- 2 year bachelor program. 1 year lab and 2nd year in clinic and classes.
- Accrediting agency is JRCERT
- Student enrollment for 2018-2019 is 29 students (14 juniors/15 seniors). Enrollment based on clinical capacity.
- Data reviewed were Program Self Study, QEP 2010 Program Summary report, Cert Exam results, Employer survey, Student Course survey, Curriculum Committee meeting minutes, and Student Learning Outcome.

Current student strengths:
- Most important is clinical skills based on their competencies which translates into their marketability and high employment rate.
- Proton treatment planning knowledge and skills which is a unique skill our students acquire during their education
- Participation in clinical research under the mentorship of clinical medical physicists and medical dosimetrists at MDA which often results in receiving awards in the AAMD Student Writing Competition. Some students receive awards at competitions and some are published.

Current Program strengths:
- Strong clinical education in the lab and clinical settings that includes a variety of treatment planning techniques from 3D to VMAT, a variety of disease sites, and the state-of-the-art proton therapy.
- We have synchronous distance learning components that allow more flexibility in program’s offering and expanding the education beyond Houston and Texas.
- 100% job placement rate after graduation.

Future Program Development:
- Would like to expand clinical sites to provide more opportunities for student enrollments for non-local students.
PROGRAM OVERVIEW OF MOLECULAR GENETIC TECHNOLOGY

- 2 programs which are B.S. program in Molecular Genetic Technology and M.S. program in Diagnostic Genetics
- Accrediting agency is NAACLS
- Student enrollment for 2018-2019 is 62 students. Last year enrollment was 49 students.
- Data reviewed were Program Self Study, QEP 2010 Program Summary report, Cert Exam results, Employer survey, Student Course survey, Curriculum Committee meeting minutes.

Current student strengths:
- 14 year 99.7% graduation rate
- 14 year 97.8% placement rate within 6 months of graduation
- 14 year 96.1% first attempt pass rate on board certification exam

Current Program strengths:
- We have 42 clinical rotations sites all across the country
- 92% acceptance rate of our students to graduate schools
- 2 of 9 programs in the US. Only undergraduate DMS program in Texas, 1 of 3 graduate DMS program in Texas. Comprehensive curriculum that includes both didactic and practical experience with state-of-the-art equipment.

Future Program Development target:
- Many areas can expand but need funding.
- IPE with molecular imaging program.
- Additional tracks within Diagnostic Genetics program.
- Detailed information of SLOs were provided in binder to each committee attendee.

PROGRAM OVERVIEW OF RADIATION THERAPY

- Brand new B.S. program. 2 graduates at this point so there is no data to share. We are collecting data and we do have assessment grades to present to SACS
- Accrediting agency is JRCERT
- JRCERT requires us to do student learning outcomes assessments in specific areas such as clinical competency, communications, professionalism.
- Student enrollment for 2018-2019 is 25 students (in individual cohorts). Our program is based on our clinical capacity which is 50.
- Data reviewed were Program Self Study, QEP 2010 Program Summary report, Cert Exam results, Employer survey, Student Course survey, Curriculum Committee meeting minutes.

Current student strengths:
- Student enter program with a clear understanding of the profession and the program expectations.
- In application process, every student is required to spend 16 hours in an radiation oncology department so they know what they are getting into.
- Students are adaptable and process a desire to treat patients accurately and with dignity which we measure.
- They demonstrate continued development of clinical and critical thinking skills. We have data to prove this.
- Students have to work independently and in teams.
- They accept responsibility and demonstrate maturity and professionalism in they accept constructive criticism without taking it personally.

Current Program strengths:
- We have faculty who are committed to help students succeed.
- High retention rate
- High job placement rate
- High registration and licensure rates
- Strong support from the Division of Radiation Oncology and affiliate sites

Future Program Development target:
- Radiation therapy is rapidly changing. The moral responsibility is developing a masters degree program in advanced practice radiation therapy and now implement competency in the new emerging technologies that we are seeing.
- Need to evaluate levels for graduate and undergraduate degree
- Detailed information was provided in binder to each committee attendee.
- This institution believes that all radiation therapists must also be dual certified in MRI.
- Need to work on both programs. We have multiple tracks
- Master degree plan has multiple pathways.
| DISCUSSION | • QEP 2021 Institutional effectiveness review summary for B.S. program in Health Care Disparities, Diversity, and Advocacy is in binder. SLOs were provided and are detailed in binder which was provided to all attendees. |
| 5 MINUTES | CLOSING COMMENTS | DR. DAVID FORD |
| DISCUSSION | • Dr. Ford thanked program directors for their hard work and time to make our QEP process very strong.
• Asked for attendees to submit their questionnaire activity form with their notes and comments before leaving. This is artifact we will use to demonstrate to SACS that we carefully considered the data.
• It will be in a typed format and given out in next meeting on March 6th |
Steering Committee

AGENDA

DATE MARCH 6, 2019 **TIME** 11:30-1:30 PM **LOCATION:** SHP DEAN’S CONFERENCE ROOM

<table>
<thead>
<tr>
<th>MEETING CALLED BY</th>
<th>Dr. David Ford</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE OF MEETING</td>
<td>Steering Committee</td>
</tr>
<tr>
<td>NOTE TAKER</td>
<td>Joanne Thomas</td>
</tr>
<tr>
<td>ATTENDEES</td>
<td></td>
</tr>
<tr>
<td>- Chair Dr. David Ford</td>
<td></td>
</tr>
<tr>
<td>- Mayank Amin</td>
<td></td>
</tr>
<tr>
<td>- Mark Bailey</td>
<td></td>
</tr>
<tr>
<td>- Dr. Jamie Baker</td>
<td></td>
</tr>
<tr>
<td>- Aziz Benamar</td>
<td></td>
</tr>
<tr>
<td>- Shaun Caldwell</td>
<td></td>
</tr>
<tr>
<td>- Dr. Mahsa Dehghanpour</td>
<td></td>
</tr>
<tr>
<td>- Menatalia El Sharkawi</td>
<td></td>
</tr>
<tr>
<td>- Catherine Evans</td>
<td></td>
</tr>
<tr>
<td>- Clara Fowler</td>
<td></td>
</tr>
<tr>
<td>- Laurissa Gann</td>
<td></td>
</tr>
<tr>
<td>- Dr. Dyaz Godfrey</td>
<td></td>
</tr>
<tr>
<td>- Dr. Brandy Greenhill</td>
<td></td>
</tr>
<tr>
<td>- Dr. Jun Gu</td>
<td></td>
</tr>
<tr>
<td>- Dr. Peter Hu</td>
<td></td>
</tr>
<tr>
<td>- Dr. Bill Mattox</td>
<td></td>
</tr>
<tr>
<td>- Helene Phu (ABSENT)</td>
<td></td>
</tr>
<tr>
<td>- Melissa Robinson</td>
<td></td>
</tr>
<tr>
<td>- Dr. Rey Trevino</td>
<td></td>
</tr>
<tr>
<td>- Dr. William Undie</td>
<td></td>
</tr>
</tbody>
</table>

Agenda topics

<table>
<thead>
<tr>
<th>5-MINUTES</th>
<th>APPROVAL MEETING MINUTES/INVITATION TO TEXAS IPE CONSORTIUM</th>
<th>DR. DAVID FORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MINUTES</td>
<td>TOPIC – STUDENT SURVEY REPORT</td>
<td>DR. REY TREVINO</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>Presentation and overview of finding</td>
<td></td>
</tr>
<tr>
<td>10 MINUTES</td>
<td>TOPIC – INTER DISCIPLINARY CASE STUDY SUMMARY</td>
<td>DR. JAMIE BAKER</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>Presentation and summary of SHP Inter Disciplinary Case Study Project</td>
<td></td>
</tr>
<tr>
<td>60 MINUTES</td>
<td>FINAL REVIEW/DISCUSSION INSTITUTIONAL EFFECTIVENESS DATA</td>
<td>DR. DAVID FORD</td>
</tr>
</tbody>
</table>
| DISCUSSION | Summary Document SHP Students
Summary Document SHP Programs/SHP Overview Document
Summary Document QEP Focus
Final Decision – QEP Focus |
| 10 MINUTES | QEP Research Subcommittee Update |
| DISCUSSION | |

Note: The text above is a natural representation of the agenda as provided.
TEAMSTEPPS MASTER TRAINING COURSE

Wednesday, April 3, 2019

TEAMSTEPPS MASTER TRAINING COURSE

4.3.2019 | 8:30 AM - 4:30 PM

Elizabeth D. Rockwell Pavilion (2nd Floor)
M.D. Anderson Library
4333 University Dr., Houston, TX 77204

Cost: $75.00 | $25.00 Student Rate
Lunch Provided

The TeamSTEPPS® Master Training Course is an interactive train-the-trainer course that prepares participants to plan, teach, implement, and sustain TeamSTEPPS® fundamentals. This course produces Master Trainers, who will be trained to go back to their respective institutions and offer TeamSTEPPS training and certification.

NETWORKING DINNER

4.3.2019 | 6:30 PM

Benihana Houston - Downtown
1518 Louisiana Street
Houston, TX 77002

TEXAS IPE CONSORTIUM BI-ANNUAL MEETING

Thursday, April 4, 2019

TEXAS IPE CONSORTIUM BI-ANNUAL MEETING

4.4.2019 | 8:30 AM - 4:00 PM

Elizabeth D. Rockwell Pavilion (2nd Floor)
M.D. Anderson Library
4333 University Dr., Houston, TX 77204

Cost: $75.00 | $25.00 Student Rate
Lunch Provided

Keynote Speaker

Janet Southerland, DDS, MPH, PhD
Vice President, Interprofessional Education
Institutional Effectiveness & Health Education Center
University of Texas Medical Branch

Teams and teamwork will be featured in networking sessions, keynote presentation, shift & shares, hands-on activities, and more.

REGISTRATION & CONTACT INFORMATION

Register for TeamSTEPPS Master Training Course and/or the Bi-Annual Meeting at:
https://app4.ttuhs.edu/TexasIPEConsortium/content/Events.aspx

Contact us: 806.743.2028 | txipeconsortium@gmail.com
Student Teamwork Survey Results

Introduction

The purpose of the survey was to determine current School of Health Professions (SHP) student opinions regarding their knowledge of teamwork and their experiences with teamwork both in general and in the classroom (face-to-face and online). The data from the survey is helpful to the efforts of the Quality Enhancement Plan (QEP). The survey was distributed to 359 SHP students who were enrolled in both Fall 2018 and Spring 2019 semesters. Each student received a personal email and URL to complete the survey. In order to illicit a high response rate, three reminders were sent out after the initial distribution over the four-week survey duration. In addition, SHP provided an incentive to the students: the program with the highest percentage of students completing the survey would win a pizza party. According to Nutty (2008), reminders to non-respondents and a prize incentive are two of the three most customary methods for potentially increasing the response rate.

Responses

At the close of the survey, 241 students had started the survey. However, 20 students did not complete any questions and 17 students did not answer at least one question. This resulted in 204 completed surveys with a response rate of 56.8%. Nutty’s (2008) “Stringent Conditions” of 3% sampling error with CI95 indicate the population of 359 should extrapolate to a 65% response rate. However, this theoretical guide is for random samples even though the survey itself was not mandatory. The 56.8% response rate is close to the 54.7% mean response rate for email surveys and is greater than the suggested benchmark by recently published research of 35-40% (Baruch & Holton, 2008).

Table 1 shows the number of students invited and number of surveys completed by academic program: Cytogenetic Technology (CGT), Clinical Laboratory Science (CLS), Diagnostic Genetics (DG), Diagnostic Imaging (DI), Diagnostic Medical Sonography (DMS), Health Care Disparities, Diversity, and Advocacy (HCDDA), Histotechnology (HTL), Medical Dosimetry (MD), Molecular Genetic Technology (MGT), Radiological Sciences (RS), and Radiation Therapy (RT).

<table>
<thead>
<tr>
<th>Program</th>
<th>Invited</th>
<th>Completed</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td>34</td>
<td>18</td>
<td>52.9</td>
</tr>
<tr>
<td>CLS</td>
<td>26</td>
<td>19</td>
<td>73.1</td>
</tr>
<tr>
<td>DG</td>
<td>9</td>
<td>7</td>
<td>77.8</td>
</tr>
<tr>
<td>DI</td>
<td>89</td>
<td>36</td>
<td>40.4</td>
</tr>
<tr>
<td>DMS</td>
<td>24</td>
<td>16</td>
<td>66.7</td>
</tr>
<tr>
<td>HCDDA</td>
<td>17</td>
<td>6</td>
<td>35.3</td>
</tr>
<tr>
<td>HTL</td>
<td>32</td>
<td>20</td>
<td>62.5</td>
</tr>
<tr>
<td>MD</td>
<td>29</td>
<td>26</td>
<td>89.7</td>
</tr>
<tr>
<td>MGT</td>
<td>49</td>
<td>34</td>
<td>69.4</td>
</tr>
<tr>
<td>RS</td>
<td>7</td>
<td>3</td>
<td>77.8</td>
</tr>
<tr>
<td>RT</td>
<td>43</td>
<td>19</td>
<td>44.2</td>
</tr>
<tr>
<td>Overall</td>
<td>359</td>
<td>204</td>
<td>56.8</td>
</tr>
</tbody>
</table>
Student Teamwork Survey Results

Demographics

Six survey questions provided descriptive data about the students that will assist SHP in a variety of ways.

First-Generation College Students

These students are defined by the Texas Higher Education Coordinating Board (2017), as students who are “the first member of his or her immediate family to attend a college or university; neither of his or her biological or adoptive parents have ever attended a college or university.” SHP is interested in implementing initiatives for these students, which comprised 53.5% ($n = 109$) of the respondents. Appendix A shows the breakdown of first-generation college students overall and by program.

How did you learn about the SHP?

The channels from which students first learn of SHP is of great interest and will help guide recruiting efforts. The highest checked response of 62 (30.4%) students indicated they did an Internet search and found SHP. This includes 48 that only did a search and 14 that also found out about SHP from another source(s). Other methods scoring 30 or higher responses were a presentation by SHP staff ($n = 40$), a friend ($n = 36$), and a health/career/other fair ($n = 30$). Appendix B shows the breakdown of individual sources overall and by program.

How many years have you been enrolled in SHP?

Although most students in SHP attend for two years, there are several programs with a one-year curriculum and one program with a three-year curriculum. Students may attend SHP longer if they graduate in one program and are accepted into another undergraduate or a graduate program. This factor cannot imply the classification of the student unless it is cross-listed with their official academic plan. Otherwise, a student in their first year with SHP could be classified as a first year student in either a one- or two-year program.

A total of 124 (60.8%) students indicated they were in their first year of SHP. However, not all of these students are classified as juniors. For instance, 28 first-year MGT students responded, but 23 are juniors in the two-year program and five are seniors in the one-year program. Appendix C shows the breakdown of years in SHP overall and by program.

What types of courses are you taking at SHP?

SHP uses three content delivery methods for courses: face-to-face, online, and hybrid (combination of the others). 150 (73.5%) students indicated they take face-to-face courses. Of these students, 83 (40.7%) also participate in hybrid and/or online courses. Only four students indicated they take online courses only. Appendix D shows the breakdown of responses for individual types overall and by program.

Last Educational Institution Prior to SHP

This will SHP in determining where SHP students attended school prior to admission to SHP. Where indicates the school (or system), city, state, and country. SHP recruiting efforts could use the data to effectively market SHP geographically. Responses were clustered into four
Student Teamwork Survey Results

groups: Greater Houston, Texas, the U.S., and international. The largest cluster of students went to school in Greater Houston ($n = 161, 78.9\%$), while 13 (6.4\%) were from another state and two (1.0\%) were international.

The Lone Star College (LSC) system ($n = 49, 24.0\%$) and the Houston Community College system ($n = 47, 23.0\%$) provided nearly half of students' education prior to joining SHP. While LSC was the largest supplier to SHP from a community college or junior college, the University of Houston ($n = 23, 11.3\%$) was the largest 4-year school. Outside of Greater Houston, both Texas A&M University and the University of Texas supplied seven (3.4\%) students each. Overall, 129 (63.2\%) students transferred from a community/junior college and 75 (36.8\%) attended a four-year school prior to SHP admission. Appendix E shows the breakdown of school (system) location overall and by program and of school (system) type overall and by program.

Results

Experience and Opinions about Teamwork in General

Students provided their opinions to twelve statements regarding their experience and opinions about teamwork in general (Pineda, et al., 2009). A five-point Likert scale (strongly disagree to strongly agree) was used to identify student responses to the statements. Responses with both median ≥ 4 and mode ≥ 4 for overall and program scores were used to indicate the responses to which students at least agreed.

In regards to overall responses, students agreed or strongly agreed (median, mode ≥ 4) with all but one statement. MD was the only program that agreed or strongly agreed with all statements (median, mode ≥ 4). HCDDA was the only program with a median $= 2.5$ for one question; DMS had a mode $= 2$ for the same question.

All programs recorded a median, mode ≥ 4 for eight of the 12 statements, while eight programs each recorded a median, mode < 4 for one statement, I would rather work on team projects than on my own. Appendix F shows the total response count by question overall and median and mode by program.

A χ^2 test was used to determine if the programs had different opinions in regards to teamwork in general. Four of the questions were found to have statistically significant relationships with the programs. Table 2 indicates the results of these questions.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Relationship between Program and Teamwork in general</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working in teams is more satisfying to me than working alone</td>
<td>$\chi^2_{40,204} = 59.3, P_{0.05} = 0.0254$</td>
<td></td>
</tr>
<tr>
<td>Teams can accomplish better outcomes than individuals working alone</td>
<td>$\chi^2_{40,204} = 59.9, P_{0.05} = 0.0223$</td>
<td></td>
</tr>
<tr>
<td>Working in a team improves my ability to work in teams in the future</td>
<td>$\chi^2_{40,204} = 70.4, P_{0.05} = 0.00212$</td>
<td></td>
</tr>
<tr>
<td>Teamwork improves the quality of final project outcomes</td>
<td>$\chi^2_{40,204} = 72.3, P_{0.05} = 0.00132$</td>
<td></td>
</tr>
</tbody>
</table>
Experiences in SHP Courses
Students responded to five questions regarding percentage of teamwork factors in their SHP courses (University of Alabama at Birmingham, 2018). Overall and program averages and standard deviations were calculated.

Overall, all answers had an average less than 50%. RS was the only program with all answer averages above 50%, while both DI and RS had all answer averages above the overall averages. Conversely, HCDDA and MGT had all answer averages below overall averages. Appendix G shows the percentages overall and by program.

An ANOVA test was used to determine if there were differences among the programs in regards to teamwork factors. One question, What percent of your courses use groupwork?, was found to have a statistically significant relationship among the programs ($F_{10,193} = 2.08$, $p_{0.05} = 0.028$).

Learning Through Teams and about Teamwork in SHP
Students selected a statement that best described their experiences with learning through teams and knowledge about teamwork at SHP compared to past educational experiences. The selections were they 1) learned more at SHP, 2) learned more prior to SHP, 3) learned about the same in SHP and prior to SHP, and 4) did not learn at SHP (University of Alabama at Birmingham, 2018).

In regards to all students, 103 (50.5%) indicated they learned as much in SHP through teams and about teamwork as they did in prior educational experiences. Eight programs also had at least 50% of their students indicate they learned as much in SHP as elsewhere. HTL was the only program with at least 50% of their students indicated they learned more in SHP than elsewhere. Appendix H shows percentages overall and by program.

A χ^2 test was used to determine if the programs had different opinions in regards to where they learned about and used teamwork. However, the results were not statistically significant $\chi^2_{30,204} = 30.1$, $p_{0.05} = 0.462$.

General Statements about Teamwork and the QEP
Students were presented with general statements about teamwork and the QEP and asked to check the statements with which they agree (University of Alabama at Birmingham, 2018).

Only two statements were checked by at least 50% of the students, My teamwork skills are better now than they were before I attended SHP ($n = 110$, 53.9%) and I have had opportunities to learn teamwork skills in student activities outside of the classroom at SHP ($n = 105$, 51.5%). Only two statements, I can explain the focus of the SHP QEP to other students, and most other students are aware of the focus of the QEP, were selected in less than 50% of the students from each program. Appendix I shows percentages overall and by program.

Teamwork Competency Preparedness
Students answered eleven questions regarding how well they believed SHP has prepared them for certain teamwork competencies (Interprofessional Education Collaborative, 2016). A five-point Likert scale (extremely well to not well at all) was used to identify student responses
to the questions. Responses with both median ≤ 2 and mode ≤ 2 for overall and program scores were used to indicate the responses to which student opinions were very well or extremely well.

In regards to overall responses, students at responded with very well or extremely well (median, mode ≤ 2) to all competencies. Seven programs responded with very well or extremely well (median, mode ≤ 2) to all competencies. Appendix J shows medians and modes overall and by programs.

A χ^2 test was used to determine if the programs had different opinions in regards to their teamwork competency preparedness in SHP. Only one competency, engage self and others to constructively manage disagreements about values, roles, goals, and actions that arise among health and other professionals and with patients, families, and community members, was found to be statistically significant ($\chi^2_{40, 204} = 70.4, p_{0.05} < 0.00212$).
References

Appendix A
First-Generation College Students Overall and By Program

<table>
<thead>
<tr>
<th>Program</th>
<th>Yes</th>
<th>No</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td>6</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>CLS</td>
<td>11</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>DG</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>DI</td>
<td>21</td>
<td>15</td>
<td>36</td>
</tr>
<tr>
<td>DMS</td>
<td>5</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>HCDDA</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>HTL</td>
<td>12</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>MD</td>
<td>15</td>
<td>11</td>
<td>26</td>
</tr>
<tr>
<td>MGT</td>
<td>19</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td>RS</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>RT</td>
<td>13</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>Overall</td>
<td>109</td>
<td>95</td>
<td>204</td>
</tr>
</tbody>
</table>
Appendix B
Sources
1: Colleague 2: Family 3: Friend 4: Internet Search 5: Newspaper or Magazine 6: Health/Career/Other Fair 7: Presentation by SHP Staff 8: Other

Individual Source Responses Overall and By Program

<table>
<thead>
<tr>
<th>Source</th>
<th>S 1</th>
<th>S 2</th>
<th>S 3</th>
<th>S 4</th>
<th>S 5</th>
<th>S 6</th>
<th>S 7</th>
<th>S 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>CLS</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>DG</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>DI</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>DMS</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>HCDDA</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>HTL</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>MD</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MGT</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>RS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RT</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>11</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Overall</td>
<td>25</td>
<td>22</td>
<td>36</td>
<td>62</td>
<td>2</td>
<td>30</td>
<td>40</td>
<td>28</td>
</tr>
</tbody>
</table>
Appendix C
Years in SHP Overall and By Program

<table>
<thead>
<tr>
<th>Program</th>
<th>1Yr</th>
<th>2 Yrs</th>
<th>3 Yrs</th>
<th>4 Yrs</th>
<th>5 Yrs</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td>13</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>CLS</td>
<td>10</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>DG</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>DI</td>
<td>28</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>DMS</td>
<td>5</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>HCDDA</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>HTL</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>MD</td>
<td>14</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>MGT</td>
<td>28</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>RS</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>RT</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Overall</td>
<td>124</td>
<td>71</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>204</td>
</tr>
</tbody>
</table>
Appendix D
Type of Classes

F: Face-to-Face O: Online H: Hybrid

Responses for Individual Types of Classes Overall and By Program

<table>
<thead>
<tr>
<th>Program</th>
<th>F</th>
<th>O</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td>13</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>CLS</td>
<td>14</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>DG</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>DI</td>
<td>25</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>DMS</td>
<td>10</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>HCDDA</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>HTL</td>
<td>17</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>MD</td>
<td>21</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>MGT</td>
<td>28</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>RS</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>RT</td>
<td>15</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Overall</td>
<td>150</td>
<td>67</td>
<td>106</td>
</tr>
</tbody>
</table>
Appendix E
School (System) Location Overall and By Program

<table>
<thead>
<tr>
<th>Program</th>
<th>Greater Houston</th>
<th>Intl</th>
<th>Texas</th>
<th>US</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td>16</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>CLS</td>
<td>15</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>DG</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>DI</td>
<td>33</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>DMS</td>
<td>13</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>HC DDA</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>HTL</td>
<td>17</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>MD</td>
<td>17</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>MGT</td>
<td>27</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>RS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>RT</td>
<td>12</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Overall</td>
<td>161</td>
<td>2</td>
<td>28</td>
<td>13</td>
<td>204</td>
</tr>
</tbody>
</table>

School (System) Type Overall and By Program

<table>
<thead>
<tr>
<th>Program</th>
<th>CC / JC</th>
<th>Four-Year</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td>12</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>CLS</td>
<td>12</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>DG</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>DI</td>
<td>30</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>DMS</td>
<td>12</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>HC DDA</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>HTL</td>
<td>12</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>MD</td>
<td>10</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>MGT</td>
<td>21</td>
<td>13</td>
<td>34</td>
</tr>
<tr>
<td>RS</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>RT</td>
<td>11</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>Overall</td>
<td>129</td>
<td>75</td>
<td>204</td>
</tr>
</tbody>
</table>
Appendix F
Statements

1: Working in teams is important to my success professionally.
2: Learning to work in teams will benefit me in whatever career path I choose.
3: Every career choice incorporates teamwork in some way.
4: Teams can accomplish better outcomes than individuals working alone.
5: Working in a team is more satisfying to me than working alone.
6: My experience with teams makes me want to work in teams again.
7: Working in a team improves my ability to work in teams in the future.
8: Working in a team would allow me to learn new things.
9: I would rather work on team projects than on my own.
10: Teamwork improves the quality of final project outcomes.
11: Teamwork keeps me more engaged and interested in project tasks.
12: Teamwork helps me to improve my communication skills.

Experience and Opinion about Teamwork in General Overall Responses

<table>
<thead>
<tr>
<th>Program</th>
<th>S 1</th>
<th>S 2</th>
<th>S 3</th>
<th>S 4</th>
<th>S 5</th>
<th>S 6</th>
<th>S 7</th>
<th>S 8</th>
<th>S 9</th>
<th>S 10</th>
<th>S 11</th>
<th>S 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>4/4</td>
<td>4/4</td>
<td>3/3</td>
<td>5/5</td>
<td>5/5</td>
<td>3/3</td>
<td>5/5</td>
<td>4/3</td>
<td>5/5</td>
</tr>
<tr>
<td>DI</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>4.5/5</td>
<td>4/4</td>
<td>4/4</td>
<td>5/5</td>
<td>5/5</td>
<td>3.5/3</td>
<td>5/5</td>
<td>4/4</td>
<td>5/5</td>
</tr>
<tr>
<td>DMS</td>
<td>4.5/5</td>
<td>5/5</td>
<td>4.5/5</td>
<td>4/4</td>
<td>4/4</td>
<td>3.5/4</td>
<td>4.5/5</td>
<td>5/5</td>
<td>3.5/2</td>
<td>4.5/5</td>
<td>4/4</td>
<td>5/5</td>
</tr>
<tr>
<td>HCDDA</td>
<td>4/4</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>3.5/4</td>
<td>3.5/4</td>
<td>4.5/5</td>
<td>4.5/5</td>
<td>2.5/3</td>
<td>4/4</td>
<td>3/3</td>
<td>5/5</td>
</tr>
<tr>
<td>HTL</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>4/4</td>
<td>4/4</td>
<td>4/4</td>
<td>5/5</td>
<td>5/5</td>
<td>3/3</td>
<td>5/5</td>
<td>4/4</td>
<td>5/5</td>
</tr>
<tr>
<td>MD</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>4.5/5</td>
<td>4.5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>4/5</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>RS</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>4/4</td>
<td>4/4</td>
<td>4/3.7</td>
<td>5/5</td>
<td>4/4</td>
<td>4/4</td>
<td>5/5</td>
<td>4/3.3</td>
<td>4/4</td>
</tr>
<tr>
<td>RT</td>
<td>4/5</td>
<td>5/5</td>
<td>5/5</td>
<td>4/3</td>
<td>4/4</td>
<td>4/4</td>
<td>5/5</td>
<td>5/5</td>
<td>4/5</td>
<td>4/5</td>
<td>4/4</td>
<td>5/5</td>
</tr>
<tr>
<td>Overall</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>4/5</td>
<td>4/4</td>
<td>4/4</td>
<td>5/5</td>
<td>5/5</td>
<td>3/3</td>
<td>4/5</td>
<td>4/4</td>
<td>5/5</td>
</tr>
</tbody>
</table>
Appendix G

Questions

1: What percent of your courses use groupwork?
2: What percent of your courses use teamwork?
3: What percent of time that you have spent in classes has been spent on groupwork or teamwork activities?
4: What percent of projects and out-of-class assignments involved groupwork or teamwork?
5: What percent of courses that you took at SHP specifically taught teamwork or team building skills?

Experiences in SHP Courses Average Percentages Overall and By Program

<table>
<thead>
<tr>
<th>Program</th>
<th>Q 1 %</th>
<th>Q 2 %</th>
<th>Q 3 %</th>
<th>Q 4 %</th>
<th>Q 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td>35</td>
<td>44</td>
<td>36</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>CLS</td>
<td>35</td>
<td>43</td>
<td>34</td>
<td>28</td>
<td>37</td>
</tr>
<tr>
<td>DG</td>
<td>54</td>
<td>38</td>
<td>42</td>
<td>39</td>
<td>49</td>
</tr>
<tr>
<td>DI</td>
<td>43</td>
<td>52</td>
<td>39</td>
<td>42</td>
<td>46</td>
</tr>
<tr>
<td>DMS</td>
<td>35</td>
<td>44</td>
<td>36</td>
<td>32</td>
<td>44</td>
</tr>
<tr>
<td>HCDDA</td>
<td>19</td>
<td>17</td>
<td>12</td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td>HTL</td>
<td>42</td>
<td>46</td>
<td>43</td>
<td>38</td>
<td>51</td>
</tr>
<tr>
<td>MD</td>
<td>39</td>
<td>39</td>
<td>37</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>MGT</td>
<td>31</td>
<td>36</td>
<td>27</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>RS</td>
<td>87</td>
<td>85</td>
<td>55</td>
<td>60</td>
<td>77</td>
</tr>
<tr>
<td>RT</td>
<td>44</td>
<td>46</td>
<td>39</td>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td>Overall</td>
<td>39</td>
<td>43</td>
<td>35</td>
<td>34</td>
<td>42</td>
</tr>
</tbody>
</table>
Appendix H
Statements

1: I learned more through teams and about teamwork in SHP than past educational experiences.
2: I learned more through teams and about teamwork in past educational experiences than in SHP.
3: My learning through teams and about teamwork was equally effective in SHP and past educational experiences.
4: I did not learn through teams or about teamwork in SHP.

Learning Through Teams and about Teamwork in SHP Overall and By Program

<table>
<thead>
<tr>
<th>Program</th>
<th>$1%$</th>
<th>$2%$</th>
<th>$3%$</th>
<th>$4%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td>22</td>
<td>17</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>CLS</td>
<td>32</td>
<td>11</td>
<td>58</td>
<td>0</td>
</tr>
<tr>
<td>DG</td>
<td>29</td>
<td>0</td>
<td>57</td>
<td>14</td>
</tr>
<tr>
<td>DI</td>
<td>42</td>
<td>11</td>
<td>44</td>
<td>3</td>
</tr>
<tr>
<td>DMS</td>
<td>31</td>
<td>6</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>HCDDA</td>
<td>17</td>
<td>17</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>HTL</td>
<td>50</td>
<td>15</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>MD</td>
<td>46</td>
<td>4</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>MGT</td>
<td>32</td>
<td>3</td>
<td>53</td>
<td>12</td>
</tr>
<tr>
<td>RS</td>
<td>0</td>
<td>29</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>RT</td>
<td>37</td>
<td>16</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>Overall</td>
<td>36</td>
<td>10</td>
<td>50</td>
<td>4</td>
</tr>
</tbody>
</table>
Appendix I
Statements

1: My teamwork skills are better now than they were before I attended SHP.
2: I can mentor other students about how to be a successful team member.
3: I have had opportunities to learn teamwork skills in student activities outside of the classroom at SHP.
4: I have had good preparation in teamwork at SHP.
5: I have had opportunities to observe effective teamwork behaviors while in SHP.
6: I can explain the focus of the SHP QEP to other students.
7: Most other students are aware of the focus of the QEP.

Individual General Statements about Teamwork and the QEP Overall and By Program

<table>
<thead>
<tr>
<th>Program</th>
<th>S 1 %</th>
<th>S 2 %</th>
<th>S 3 %</th>
<th>S 4 %</th>
<th>S 5 %</th>
<th>S 6 %</th>
<th>S 7 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td>44</td>
<td>33</td>
<td>33</td>
<td>50</td>
<td>44</td>
<td>11</td>
<td>5.6</td>
</tr>
<tr>
<td>CLS</td>
<td>42</td>
<td>16</td>
<td>53</td>
<td>21</td>
<td>42</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DG</td>
<td>57</td>
<td>57</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DI</td>
<td>53</td>
<td>39</td>
<td>56</td>
<td>39</td>
<td>53</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>DMS</td>
<td>75</td>
<td>44</td>
<td>75</td>
<td>38</td>
<td>38</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>HCDDA</td>
<td>33</td>
<td>100</td>
<td>17</td>
<td>50</td>
<td>33</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>HTL</td>
<td>65</td>
<td>15</td>
<td>55</td>
<td>45</td>
<td>35</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>MD</td>
<td>62</td>
<td>62</td>
<td>58</td>
<td>42</td>
<td>65</td>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>MGT</td>
<td>44</td>
<td>32</td>
<td>53</td>
<td>38</td>
<td>50</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>RS</td>
<td>33</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>RT</td>
<td>63</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>68</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td>Overall</td>
<td>54</td>
<td>41</td>
<td>52</td>
<td>40</td>
<td>49</td>
<td>16</td>
<td>11</td>
</tr>
</tbody>
</table>
Appendix J

Statements

1: Describe the process of team development and the roles and practices of effective teams.
2: Develop consensus on the ethical principles to guide all aspects of team work.
3: Engage health and other professionals in shared patient-centered and population-focused problem-solving.
4: Integrate the knowledge and experience of health and other professions to inform health and care decisions, while respecting patient and community values and priorities/preferences for care.
5: Apply leadership practices that support collaborative practice and team effectiveness.
6: Engage self and others to constructively manage disagreements about values, roles, goals, and actions that arise among health and other professionals and with patients, families, and community members.
7: Share accountability with other professions, patients, and communities for outcomes relevant to prevention and health care.
8: Reflect on individual and team performance for individual, as well as team, performance improvement.
9: Use process improvement to increase effectiveness of interprofessional teamwork and team-based services, programs, and policies.
10: Use available evidence to inform effective teamwork and team-based practices.
11: Perform effectively on teams and in different team roles in a variety of settings.

Teamwork Competency Preparedness Overall and By Program Median/Mode

<table>
<thead>
<tr>
<th>Program</th>
<th>S 1</th>
<th>S 2</th>
<th>S 3</th>
<th>S 4</th>
<th>S 5</th>
<th>S 6</th>
<th>S 7</th>
<th>S 8</th>
<th>S 9</th>
<th>S 10</th>
<th>S 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td>3/3</td>
<td>2.5/3</td>
<td>2/1</td>
<td>2/1</td>
<td>2/3</td>
<td>2/1</td>
<td>2/2</td>
<td>2/1</td>
<td>2/2</td>
<td>2/1</td>
<td>2/2</td>
</tr>
<tr>
<td>CLS</td>
<td>3/3</td>
<td>3/3</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>3/3</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
</tr>
<tr>
<td>DG</td>
<td>3/3</td>
<td>2/2</td>
<td>2/2</td>
<td>2/1</td>
<td>2/2</td>
<td>2/2</td>
<td>2/1</td>
<td>2/1</td>
<td>2/3</td>
<td>2/1</td>
<td>2/1</td>
</tr>
<tr>
<td>DI</td>
<td>2/2</td>
<td>2/2</td>
<td>2/1</td>
<td>1/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/2</td>
<td>2/1</td>
<td>2/1</td>
</tr>
<tr>
<td>DMS</td>
<td>2/2</td>
<td>2/1</td>
<td>2/2</td>
<td>1/1</td>
<td>2/2</td>
<td>2/1</td>
<td>1.5/1</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/1</td>
</tr>
<tr>
<td>HCDDA</td>
<td>2.5/1</td>
<td>1.5/1</td>
<td>2.5/1</td>
<td>1.5/1</td>
<td>1/1</td>
<td>2/1</td>
<td>2/1</td>
<td>1.5/1</td>
<td>1.5/1</td>
<td>2/1</td>
<td>1.5/1</td>
</tr>
<tr>
<td>HTL</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/1</td>
<td>2/2</td>
<td>2/2</td>
<td>2/1</td>
<td>2/2</td>
<td>2/1</td>
<td>2/2</td>
</tr>
<tr>
<td>MD</td>
<td>1.5/1</td>
<td>1/1</td>
</tr>
<tr>
<td>MGT</td>
<td>2/2</td>
</tr>
<tr>
<td>RS</td>
<td>2/2</td>
</tr>
<tr>
<td>RT</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/2</td>
<td>2/1</td>
<td>2/2</td>
<td>2/1</td>
</tr>
<tr>
<td>Overall</td>
<td>2/2</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/1</td>
<td>2/2</td>
<td>2/1</td>
<td>2/1</td>
</tr>
</tbody>
</table>
Interdisciplinary Case Study (IDCS) Fact Sheet

CSI – Case Study Investigation: Interdisciplinary Learning in the Virtual Clinic

- Initiated in 2011 at Dean Ahearn’s urging. Faculty would develop an interdisciplinary learning event that would involve all the senior students of the SHP.

- Goals:
 - Facilitate interdisciplinary collaboration between SHP students
 - Install an understanding of each program’s unique role in the detection, diagnosis, and treatment of cancer
 - Promote critical thinking through interdisciplinary discussions among diverse health professions students
 - Encourage team work, organization, and effective oral communication under limiting and time sensitive conditions

- From 2011-2016 faculty developed five fictional patient cases:
 - Case 1 – Breast Cancer and Lymphoma
 - Case 2 – Burkitts Lymphoma
 - Case 3 – Lung Cancer
 - Case 4 – Prostate Cancer
 - Case 5 – Rhabdomyosarcoma

Case Construction Process
- Create a virtual comprehensive cancer center by building interactive HTML webpages using Adobe Dreamweaver CS4. Train the trainer!

- Develop a fictional patient that students would follow through his/her cancer diagnosis and treatment
- Students would make decisions (according to their discipline) concerning test interpretation and treatment administration
Interdisciplinary Case Study

Patient Demographics

Mrs. Smith is a 63 year old female who was seen at MD Anderson Cancer Center after an abnormal screening mammogram.

Past Medical History

Patient denies a history of smoking, alcohol, or drugs. First pregnancy at the age of 21 and has two living children. Menarche at the age of 12. Menopause at the age of 57. Never used hormone replacement therapy or oral contraceptives.

Family History: Significant for mother with ovarian cancer, sister with breast cancer and maternal grandmother with breast cancer. Father was a long time smoker and had lung cancer.

Physical Exam: Mass on the mammogram not palpable by clinical breast examination. No dimpling, pea d’orange, nipple discharge, or nipple retraction noted on physical examination.

October 2 2001

Mrs. Smith presents at MDACC following an abnormal screening mammogram.

- CLS reports
- CGT reports
- CYT reports
- DI reports
- HT reports
- MD reports
- MGT reports
- RT reports

Student groups must decide what diagnostic tests or treatments are required at that stage in the patient’s care.

• Emphasized active learning, group collaboration during discussions, and required student reflection and analysis of prior clinical and didactic knowledge

Case Delivery

• Booked a large conference room at CPB, annually in the spring (Schedule – Appendix A)
• Senior student attendance was mandatory. Active participation was worth 5% of a course grade
• 120 – 150 students attended each year. All SHP faculty also participated. Refreshments provided.
• Prior to the event, students divided into groups with at least one student from each program. Two laptops were allowed per table, and the groups progressed through the case conference together.
• Faculty were assigned to tables to provide assistance and facilitate discussion.
• Interdisciplinary groups would work through the HTML pages to diagnose and treat the patient.
• After each interdisciplinary group completes the case study, the students from each discipline get together to discuss among themselves the role of each health care team in the process of patient diagnosis and treatment.

• Students provided with a PPT template to make a presentation. They will present the role of other programs in the diagnosis and treatment of the fictional patient as well as the role of their discipline.

Assessment and Evaluation

• Gave pre/post-tests to student participants to evaluate their knowledge and understanding of the role of other allied health care disciplines at the SHP before and after the interdisciplinary event (Appendix B).

• Faculty would evaluate students at each table based on rubric (Appendix C).

• Faculty and students would evaluate interdisciplinary event and provide feedback (Appendix D).

Presentations and Recognition of Faculty Efforts in SHP Interdisciplinary Case Study

• Jasig-Sakai (2012)

• Teaching with Sakai Innovation Award (2012)

• Texas Society of Allied Health Professions-TSAHP (2012)

• Association of Educators in Imaging and Radiologic Sciences, Inc-AEIRS (2013)

• Association of Educators in Imaging and Radiologic Sciences, Inc (AEIRS)/Elsevier Innovator of the Year Award (2013)

• University of Texas Medical Branch (UTMB) Academy of Master Teachers Educational Symposium (2013)

• Texas Career Education Summer Conference-TCEC (2015)
Appendix A

Interdisciplinary Case Conference
Timeline of Events

- 12:30 pm – Faculty arrive at CPB8 Rm1-8.

- 1:00 – 1:15 pm – Students arrive and go to assigned tables. Faculty take attendance of students at their assigned table. Faculty will load HTML file from jump drive onto student computers.

- 1:15 – 1:25 pm – Introduction and discussion of objectives.

- 1:25 – 1:35 pm – Pretest completed by students. Faculty at each assigned table will distribute and collect the pretest. Scantrons are provided.

- 1:35 – 2:45 pm – Interdisciplinary teams work through HTML. Faculty complete evaluations for each student at assigned tables.

- 2:45 – 3:15 pm – Individual programs meet to discuss findings and prepare each program’s component of PPT concerning their field.

- 3:15 – 4:00 pm – Interdisciplinary teams reconvene. A student from each program will present their program’s findings.
 - 5 minutes per program = 8 programs = 40 minutes + 10 minutes for switching of presenters.

- 4:00 – 4:10 pm – Post-test completed by students. Faculty at each assigned table will distribute and collect the post-test. Scantrons are provided.

- 4:10 – 4:20 pm – Closing remarks and completion of evaluations. Faculty distribute evaluations to students at their table and then collect completed forms (each faculty member will also need to complete an evaluation of the session).

- 4:20 – 4:30 pm – Faculty collect materials.
Appendix B

The University of Texas MD Anderson Cancer Center
School of Health Professions

Interdisciplinary Case Study
Pre/Post-Test

Student Name:

Check Program: □ CGT □ CLS □ Cytotech □ DI □ HT □ MD □ MGT □ RT

1. Which statement best describes the roles and responsibilities of medical dosimetrists?
 a. Set up the patient and administer the prescribed dose of radiation toward the tumor based on the approved treatment plan
 b. Construct a treatment plan that when executed would deliver the prescribed dose of radiation to the tumor while minimizing the dose to the surrounding healthy tissues
 c. Obtain a CT scan for tumor localization
 d. Examine and count blood cells to detect abnormalities found in anemia, leukemia, and infections so appropriate therapy can be started

2. Which statement best describes the roles and responsibilities of radiation therapists?
 a. Determine the best antibiotics to use for bacterial infections
 b. Analyze body fluids for many diverse proteins, sugars, enzymes, lipids, hormones, and drugs
 c. A clinical specialty dealing with the use of ionizing radiation in the treatment of malignant tumors or associated disorders
 d. Assist the pathologist and radiologists during fine needle aspiration procedures

3. Molecular genetic technologists are responsible for which one of the following tasks?
 a. Extract, purify and enzymatically manipulate nucleic acids (DNA and RNA) from clinical specimen
 b. Diagnose infections based on the detection of pathogen DNA or RNA in clinical specimen
 c. Study patient genomes to find new mutations that may help disease diagnosis and/or personalized therapy
 d. All of the above

4. Which statement best describes the roles and responsibilities of histotechnologists?
 a. Clinical laboratory specialty that studies the role of genetics (DNA/RNA/Protein) in diagnosing and screening disease as well as determining treatment
 b. Prepare human or animal tissue samples for microscopic examination
 c. Assist the pathologist and radiologists during fine needle aspiration procedures
 d. Examine human cell samples using the light microscope

5. Cytotechnologists are responsible for which one of the following tasks?
 a. Study cellular changes at the microscopic level to detect and diagnose disease
 b. Examine human cell samples using the light microscope
 c. Quantitation and quality analysis of DNA/RNA
6. Which statement best describes the roles and responsibilities of cytogenetic technologists?
 a. Search for clues by using conventional and molecular DNA techniques, and the latest computer imaging technology to study chromosomes or genes
 b. Study cell division and the structure of chromosomes as applied to the diagnosis and monitoring of acquired and inherited abnormalities
 c. Identify chromosomal abnormalities to detect and treat genetic diseases
 d. All of the above

7. Clinical laboratory professionals are responsible for which one of the following?
 a. Examine and count blood cells to detect abnormalities found in anemia, leukemia, and infections so appropriate therapy can be started
 b. Detect and identify disease-causing bacteria and parasites
 c. Determine the best antibiotics to use for bacterial infections
 d. All of the above

8. Diagnostic imaging sonographers are responsible for which one of the following?
 a. Set up the patient and administer the prescribed dose of radiation toward the tumor based on the approved treatment plan
 b. Use ultrasound to treat calcified tumors
 c. Uses ultrasound equipment to create images of structures inside the human body, used for diagnosis
 d. Design treatment plan using ultrasound images

9. Which statement best describes the roles and responsibilities of magnetic resonance imaging technicians?
 a. Use magnetic field and radio waves to create detailed images of the body for diagnosing several types of pathologies
 b. Utilize ionizing radiation to produce cross-sectional images of the body
 c. Use ultrasound equipment to create images of structures inside the human body, used for diagnosis
 d. All of the above

10. Which statement best describes the roles and responsibilities of computed tomography imaging technicians?
 a. Use magnetic field and radio waves to create detailed images of the body for diagnosing several types of pathologies
 b. Utilize ionizing radiation to produce cross-sectional images of the body
 c. Use ultrasound equipment to create images of structures inside the human body, used for diagnosis
 d. All of the above
Appendix C

Interdisciplinary Case Study Student Assessment

Student participation during the interdisciplinary case study conference will be assessed to ensure that each student:

1. Communicates and expresses ideas in an assertive and respectful manner.
2. Uses effective communication strategies with others.
3. Describes one’s own roles and responsibilities in a clear manner.
4. Contributes to interprofessional team discussions.
5. Demonstrates active listening and is respectful of different perspectives and opinions from others.

These expectations will be assessed using the six dimensions and comments section included in the rubric that follows.

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Minimal 1</th>
<th>Developing 2</th>
<th>Competent 3</th>
<th>Mastery 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Student pays attention when other team members are speaking</td>
<td>Rarely</td>
<td>Occasionally</td>
<td>Frequently</td>
<td>Consistently</td>
</tr>
<tr>
<td>2 Student stays on task and focused on group assignments</td>
<td>Rarely</td>
<td>Occasionally</td>
<td>Frequently</td>
<td>Consistently</td>
</tr>
<tr>
<td>3 Student communicates with other team members and SHP faculty in a respectful manner</td>
<td>Rarely</td>
<td>Occasionally</td>
<td>Frequently</td>
<td>Consistently</td>
</tr>
<tr>
<td>4 Student communicates discipline specific information / role to other team members</td>
<td>Rarely</td>
<td>Occasionally</td>
<td>Frequently</td>
<td>Consistently</td>
</tr>
<tr>
<td>5 Student can explain discipline-specific terms / concepts to the team</td>
<td>Rarely</td>
<td>Occasionally</td>
<td>Frequently</td>
<td>Consistently</td>
</tr>
<tr>
<td>6 Student contributes to the overall interdisciplinary team discussion</td>
<td>Rarely</td>
<td>Occasionally</td>
<td>Frequently</td>
<td>Consistently</td>
</tr>
<tr>
<td>7</td>
<td>Additional Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interdisciplinary Case Study Evaluation: Check the appropriate boxes below.

<table>
<thead>
<tr>
<th>SHP Affiliation</th>
<th>Faculty/Staff</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytotech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. This case study facilitated interdisciplinary collaboration between SHP students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. This case study increased my understanding of each program's unique role in the detection, diagnosis, and treatment of cancer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. This case study promoted critical thinking through interprofessional discussion among diverse health care professions students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. This case study encouraged teamwork, organization, and effective oral communication under limiting and time sensitive conditions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments
LIST ANY TOPICS THAT YOU WOULD LIKE TO SEE AS FUTURE INTERDISCIPLINARY CASE STUDIES.
COMMENTS TO HELP IMPROVE THIS CONFERENCE FOR NEXT YEAR.
Jan 16, 2019 Steering Committee Meeting Questionnaire

Activity:

I. What does the data tell us about SHP students?

- The data shows that there is a desire/need for inter-professional education.
- Strong technical skills and success rate but focused on competency.
- Not a lot of focus on non-clinical skills/non-technical skills for some students.
- Students are passing and job placement is good.
- Students are aware of expectations
- Students exposed to professionalism and technical skills.
- Students know the other programs but may not have an appreciation for the roles others play.

CLS – Strong technical skills; students score above national average (BOC scores); strong clinical understanding associated with high job placement.

CT – Highest scores for CT exam for last 5 years. High level professional skills.

DI – Accurate imaging capabilities; prepared for research opportunities.

HISTO – Students must display technical skills handling sharp harmful tools. Strong background in science.

Med DOS – Strong clinical communication skills and professionalism. Research capabilities often result in publishing.

MAT – Elite group, only 2 programs in country; very intelligent group of individuals.

RT – Value patient interaction and clinical education. Adaptable to environmental changes.

All programs invest in professionalism and technical abilities of students

SHP students have:

- Strong tech skills
- Strong job placement
- High graduation rate
- High certification rate

Students who attend SHP have a high potential for future success – high employment or grad work.

Students are well supported at all levels of success. Low performers receive remediation

High performers

Emphasis is placed on accuracy and quality control
I. What does the data tell us about SHP students? (Continued)

On-line and part-time students (small #s). Students rotate outside of Texas (50%) CTG/MTG
Graded on chromosome identification. Students have research proposal skills, data collection
for validation study, and some data analysis.

III Students present research at national professional conference, received student awards.
Students have opportunities to be active in professional organizations. Students have
opportunities to present research at the institution. Students have opportunities to publish.

II Students receive individual and small group instruction and mentoring (low faculty:student)

II Students are able to practice thru simulation and gain confidence before going into the
clinical setting.

II Student safety is of high concern (radiation, chemical, sample collection, infection control)
Students are taught professionalism and ethics.

Student population is diverse, but education on professionalism is important. Students are
exposed to a variety of clinical and research sites. Writing skills are important for student
success. Students meet benchmarking standards across the board. And in many cases exceed
national standards. Communication and presentation skills are essential for student success.
MRI and Proton therapy becoming more available as advanced radiation techniques. Need for
masters programming in multiple areas.

Clinical labs – Develop exceptional skills (based on QC data, certification/exam pass rates and
job retention)

Cytogenetic Tech – highest score record keepers and high competency skills: independent in lab
rotations.

DI – 100% pass rate in all areas; well-rounded skills because they learn technical skills and
interpersonal/communication skills.

Histotechnology – tissue tested/biopsied from surgery; students score 50-70 points above
average, intensive lab practice

Medical Dosimetry – highly skilled thanks to proton center access, MDA – Cooper in NJ

Molecular Gen Tech – 14 year record of higher rates, job placement and first attempt pass rate;
25% of grads continue education journey and 92% acceptance rate.

Radiation therapy – Students are well aware of patient experience; have access to MDA
network, including Banner MD Anderson in NM.
I. What does the data tell us about SHP students? (Continued)

Our students are highly skilled and receive expansive training that sets them up for early independence and career success. Beyond technical skills, SHP students also learn professionalism, interpersonal skills and written communications. These characteristics make them highly sought after in medical field.

- Limited clinical sites for students and support (lab)
- Low job placement and not aware of factors (Cytology)
- Low rate of professional performance competencies (20%)
Jan 16, 2019 Steering Committee Meeting Questionnaire

Activity:

II. What does the data tell us about SHP programs?

* Future expansion
* Train students with latest technology
* Dual certified tracks (co-trained with >/program)
* Produce high quality graduates
* Well-supported. Good teaching/learning resources
* Clinical rotations well structured
* Emphasizes safety
* Focus on professionalism & critical thinking skills
* Faculty development (Train the trainer)
* Support continuous education
* Research
* Inter-professional education

CLS - Needs faculty development. Instructors transition from bench Tech to instructor

CG - Student research is clinic based and diagnostic competencies are emphasized

DI - Radiology Imaging. Large program: CT, Radiography, MRI, Sonography

Technical competency are emphasized. Image capturing is vital. Cross discipline writing is encouraged.

MD - Inter-professional education activities with physicists and radiation therapist.

MGT - Very dynamic program multi-task areas of molecular genetics, research, student outcomes are excellent.

RT - Team are individual efforts from the students

CLS - Needs clinic expansion and QC competency dependent on clinical rotation

-Faculty development

Cytogenetic - On-line track could expand # of students
II. What does the data tell us about SHP programs? (Continued)

- Faculty development
 - Upgrade of old equipment

Di - Job placement rate
 - Large pool of applicants

Histotechnology - High pass rate on exam
 - Good lab space

Med Dosimetry - More clinical sites needed
 - High job placement rate

Molecular Genetics - High job placement rate
 - Many students go on to graduate/medical school
 - Need expansion of teaching lab space

Radiation Therapy - High job placement rate – Master’s degree
 - Teach how to accept constructive criticism

Common - High job placement
 - Need more clinical rotation sites
 - Master’s programs
Jan 16, 2019 Steering Committee Meeting Questionnaire
Activity:

III. What themes/skills emerge from SHP institutional effectiveness data that support a direction for the QEP?

1. QEP project: Inter-professional education

QEP Project:
IP Ed: 6
Comp-based Ed: 1
Ethics: 0
Other: 0

7 Total Programs

Other Themes:
Faculty Development – new faculty/staff (not student-oriented): 3

Program Expansion: 2
- On-line/distance
- Graduate
- Clinical affiliate needs
- Dual degree

MGT? Did not answer IPE

Top Themes:
1. Inter-professional Education
2. Program Expansion
 - On-line/distance
 - Graduate
 - Clinical affiliate needs
 - Dual degree
3. Faculty Development
 - New faculty/staff training on education foundation
III. What themes/skills emerge from SHP institutional effectiveness data that support a direction for the QEP? (Continued)

- Competency based programs
- High job placement rates
- High graduation rates
- High certification board pass rates
- Increase automation for testing
- Access to advanced equipment
- State-of-the-art training activities
- High technical skills
- Highly proficient by the time of graduation
- Highly ranked programs
- Patient interaction
- Professionalism
- Critical thinking
- Technical skills
- Presentation oral
- Math skill
- 2008 Largest
- Continuing education
- 25%
- 90% acceptance rate
- 3 in a row

Competency based

*Technical evaluation of standards
RCC’s used

Good technical skills

**Measuring Professionalism

Faculty Development

Safety

*Writing skills

Presenting

Research
Ethics

III. What themes/skills emerge from SHP institutional effectiveness data that support a direction for the QEP? (Continued)

1. Professional skills
2. Technical skills
3. Faculty development – shortage of selection
4. Experimental learning (clinical focused skills)
5. Team based inter-professional learning initiatives
6. Emphasis on students advancement to Masters programs
7. Graduate programs – focused toward leadership and research.

CLS program’s students benefit from inter-professional education based on Dr. Greenhill (program director) presentation.

Cytogenetic program students benefit from competency-based education the most based on Dr. Gu’s presentation. However, inter-professional education (IPE) is a targeted area for the program’s future development.

DI program stated that they benefit from IPE.

Histotechnology program identified IPE as one area that their students would benefit from.

Molecular dosimetry and radiation therapy students don’t have understanding of many other programs except “Diagnostic Imaging” so they benefit from IPE.

CLS
- Emphasizes technical skills and demonstrating competency in students.
- States that students would benefit from inter-professional education.

CGT
- Student outcome focused on professionalism which is a component of inter-professionalism education.

DI
- Outcomes involved professionalism, writing and oral communications skills, and MDACC core values.

HT
- Student outcome focused on professionalism; pathologists simulate ordering of specialized stains under time sensitive conditions with students.
III. What themes/skills emerge from SHP institutional effectiveness data that support a direction for the QEP? (Continued)

MD
- Student outcomes emphasize professionalism, critical thinking, and ethics; written and oral communication also important.

MGT
- Student outcomes focused in professionalism, teamwork (inter-professional education), ethics, communication.

RT
- Outcomes state a focus on professionalism, critical thinking, and communication - inter-professionalism education.

Inter-professional Collab:

<table>
<thead>
<tr>
<th>CLS</th>
<th>(CT 4 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI</td>
<td>(MRI 1 2 3 4 5)</td>
</tr>
<tr>
<td>(CLS 5)</td>
<td>(OMS 3 4)</td>
</tr>
<tr>
<td>CGT 1 3 5</td>
<td>(RS 1 2 3 4)</td>
</tr>
<tr>
<td>(DI 1 4 5)</td>
<td>(MGT 1)</td>
</tr>
<tr>
<td>HTL</td>
<td>(DG.M 1 2 3 5)</td>
</tr>
<tr>
<td>(HTL 1 5)</td>
<td>(DGC 1 2 3 5)</td>
</tr>
<tr>
<td>MD</td>
<td>RT (2 4 5)</td>
</tr>
<tr>
<td>(MD 2 3 4)</td>
<td>(DDA 3 4 6 7 9)</td>
</tr>
</tbody>
</table>

Competency Ed:

CGT	(DMS 1 2 3 5)
(CLS 1 2 3)	(MGT 2 3 4 5)
(CGT 2)	(RT 1 2 3)
(DI 2)	(DDA 1 2 5 8)
(HTL 2 3 4)	
III. What themes/skills emerge from SHP institutional effectiveness data that support a direction for the QEP? (Continued)

(MD 1)
(CT 1 2 3)
(MRI 1)

Ethics:
(D 1 3)
(CGT 4)
(MD 5)
(PS 5)
(DGM 4)

Lots of examples of IP and CE, but lacking in Ethics.

Analysis:
- By last school attended
- By number of years in SHP
- On-line vs face 2 face

Get party. Incentive for next year.

Significant factors for success.
QEP Research Subcommittee

Members:
Clara Fowler, Research Medical Library
Laurissa Gann, Research Medical Library
Helene Phu, TIPS
Rey Trevino, School of Health Professions

The subcommittee members have met regularly and are drafting white papers to support the QEP. We are currently working on the interprofessional education white paper.

Draft Outline of Interprofessional Education (IPE) White Paper

I. Definitions and impetus for development of IPE (historical) - REY

II. Best Practices from other healthcare and education organizations - CLARA
a. University of Minnesota
b. Toronto

III. Established Team Models – HELENE
a. TeamSTEPPS
b. Toronto IPE Model

IV. Assessment Tools – LAURISSA
a. Student Learning Outcomes
b. Teaming Readiness
c. Faculty Readiness

V. MD Anderson Framework - HELENE
a. Why it was developed? How was it developed? Who is involved?

IPE Bibliography – in development

https://doi.org/10.3109/13561820.2014.917407

https://journals.sagepub.com/doi/10.1177/0018726708094863

https://uab.co1.qualtrics.com/jfe/form/SV_0OkMQ73y11w31HL.
